AD-A163 272 USER’S MANUAL FOR THE PROTOTYPE ADA (TRADEMARK) fVeY
- COMPILER EVALUATION Cﬂ?ﬂﬂ (U) llSTITUTE FOR DEFEISE
ANALYSES ALEXANDRIR VA A A H
UNCLASSIFIED IDA-P-1879 IDA/HQ-83-39428 HDRSOZ 84 0-0031 F/G 9/2

rrrEEEE

EEEE
EE

o 25
il
=

~

2 s e

s‘:\

MICROCOPY RESOLUTION TEST CHART ORY
NATIONA: WIREAL T STANDARDS 1962 A -:."}
[0

o

o
e o

4

[}
il sl

ORI

Y e e
PR
.

'a_ s 'a

.-

s e’

.
D

-
&

T

PACA M

P
e

NN A
[SV N S UL S

S (2%
AR

P

.‘. 't

R A
Cooy 14 ofs2copies o

i

!

-~

AD-A163 272 e‘,

IDA PAPER P-1879 {

USER’S MANUAL FOR THE PROTOTYPE Ada*
- COMPILER EVALUATION CAPABILITY (ACEC) g
i i VERSION 1 s

b Audrey A. Hook e
- Gregory A. Riccardi e
Michael Vilot b
Stephen Welke -

October 1985

TG FILE copy

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

This document hay Seea approved
for puh' relecme -d eale; its
distrib: ;I8 wniin 'jad, Ry

P

l D A INSTITUTE FOR DEFENSE ANALYSES L—
—— . 1801 N. Beauregard Street, Alexandria, Virginia 22311 ':j:?:-ﬁ

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office). ;
DA Log No. HQ 85-30428 “—‘

.......................................
Tt T T T T T et et et R a e e et it et e ettt ettt et et et Attt
......

i

J

=
S

..
11
AP
.
. l-' N
B
‘I ‘O ."‘ ".l
» '.‘ I I)

MY
L) “ “

*

- -
'+ fe N
-

»
L
TSR T
L4
[

»
P .
3t o

N]
o
LIPS AN

’

nta

Approved for public release; distribution unlimited. .

[ARAL |
ST
A

"7
A

The work reported in this document was conducted under contract
MDA 903 84 C 0031 for the Department of Defense. The publication o
of this IDA Paper doss not indicste endorsement by the Department o
of Defense, nor should the contents be construed as reflecting the
official position of that agency.

-
. e
R T S A]
PP AR AN AN
Ll st el e els

¥’
™
v

.
i . A I
.
. R
!
e e

This Paper has been reviewad by 1DA to assure that it meets high . -
standards of thoroughness, objectivity, and sound analytical method- RS
ology and that the conclusions stem from the methodology. B i 1

(1 _
R AT

F T T T A U L
P A SR R P IR I T A I e AR s
L PR VA WA WA WA WP i SRS Ry S a2t

B A R R It b Aot e o e 1 a2 Chdre B s
- . i T < N N Y TN R T T T T e R R -

RN SRS S T T TN = vy

.

.'."..'.‘
Tt e
“ % .
o

TN R ATROR O YRR VAT L0 A3 272
REPORT DOCUMENTATION PAGE -
Vs REPORT SECURITY CLASSIFICATION b AERENCF mg.m ' "

FAYR

M—
STEHWE Y e v e,

1 & »
. ¥ 2, 4,4, 4, .
AL

UNCLASSIFIED
T~ T
20, SEC ICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
M. DA A DO NCRADING SCHEDULE Public release/unlimited distribution
= ™ e ™ S e e Sy
l g_-. nasozmmc ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-1879

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(i spplicable)

Institute for Defense Analvsds DoD INDA Management Office

R
[M]
a

DR

|&. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and 2iP Code)
RS 1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311
L ;o
182, NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER 1S ,i
ORGANIZATION Office of the Unde 0f applicable)]
‘LSecretary of Defense (R&E) OlISDRE MDA 903 84 C N3l
¥ 8c. ADORESS (City, State, and 2 Code) i 10. SOURCE OF FUNDING NUMBERS L Jr
" Ada Joint P Offi PROGRAM PROJECT TASK WORK UNIT
r 12?1 Z."Feri"?fm * ELEMENT NO. I NO. NO. IAccessuou wo. | T
Arlington, VA 22202 T-5-328 .4
1. TITLE Gnclude Security Classification)
. User's Manual for the Prototype Ada* Compiler Evaluation Capahility (ACEC) Version 1
12 PERSONAL AUTHOR(S). .
Audrey A. Hook, Gregory A. Riccardi, Michael Vilot, Stephen Welke -
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT L i
inal F1a3l i FROM TO October 1985 66 N
1

.16, SUPPLEMENTARY NOTATION RS

|

K72 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP Ada programming language, comnilers, ACEC, ACVC, evaluation
[& validation, data collection, support software, software
architecture

- 19. ABSTRACT (Continve on reverse i necessary and identify by block number)
I The purpose of the Prototype Ada Compiler Evaluation Camabilitv (ACEC) is to provide users

with 1) an organized suite of compiler performace tests, and 2) support software for
executing these tests and collecting performance statistics. These performance tests were
collected by the Ada Evaluation and Validation (E&V) Team from several sources. The test
l programs, which have been in the public domain for some time, have been organized as a test
suite according to catepories which are explained in Section II. The strategv for measuring
. test performance and obtaining differential statistics is describhed in Section III. Section
' IV descrihes the entire supvort software architecture, including machine-denendent modules.
General instructions for executing the Prototyne ACEC are provided in Section V.

All other editions are obsolete

'
-
m DISTRIBUTION / AVAILABILITY OF ABSTRACT 2. ABSTRACT SECURITY CLASSIFICATION
Dunciassirieounumred O same As ReT. CJoTic USERS
335 NAME OF RESPONSISLE INDIVIDUAL 226 TELEPHONE (Include Area Code) | 22c OFFICE SYMBOL
< DD FORM 1473, 8a MAR 83 APR edition may be used untl exhausted ECURITY IFICATION OF THIS PA O

D B R L L S e E T T UL N S L P B T, e

N . LT L P TN Y U P I D N . ~

et Tl a ettt et e N - R S e T Ty DR . . RIS R N T
. — Al - AP CTRIE T T o I Dot S B ST I VL MR I TP At e sl el el om e \.a\‘,a_- A A \’p - a'-‘-'pj

PUIR LU

-~

IDA PAPER P-1879

RN « CAEAAAAS 1S
'.v"'..'.l. '.-."n.‘. . ..:

USER’S MANUAL FOR THE PROTOTYPE Ada
COMPILER EVALUATION CAPABILITY (ACEC)
VERSION 1

Audrey A. Hook
Gregory A. Riccardi
Michael Vilot
Stephen Welke

Accession For
F.__

NTIS GRA&I g

DTIC TAB
October 1985 Unannounced O

Justification |

By
Distribution/
Availability Codes
Avall and/or
Dist Special

et

AN
2 IDA
:r INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-5-328

X

.............

“e . .'."'4" ‘.(".
[N C N oy

R T T T T T A P TN SN SR SRt R Tt S}
.............

..........

) _ 3
- ATTRIBUTION N
s
. !E The User’'s Manual was prepared by the IDA team who gx;
: developed the Prototype ACEC. The members of this team were: e
f.:\:.'
Lo Audrey Hook, IDA e
S Max Robinson, IDA -
w Steve Welke, IDA P
N Jeff Clouse, IDA A
’ Dr. Gregory Riccardi, Florida State University :
Dr. Ugo Gagliardi, General Systems Group
Michael Vilot, General Systems Group
Others who made ccntributions to the development of the Prototype E‘

ACEC were:

Virginia Castor, AJPO
Jon Squire, Westinghouse Electric Corporation,
. who as chairman of the SIGADA Performance Issues .
v Working Group (PIWG), obtained member volunteers ber
who performed the Beta test for the Prototype ACEC T
and thereby contributed to the User's Manual. S
These volunteers were: s

N Robert Gable, Lear Siegler Instruments Division i
] Daniel Ehrenfried, Rational | L

e
4

- ‘ SECTION
3 = 1 -
L II -

III

1v

<
|

APPENDIX

U Q W >
| | |

LIST OF FIGURES

1
2
3 -
4

INTRODUCTION

TABLE OF CONTENTS

TEST CATEGORIES AND ATTRIBUTES

DATA COLLECTION AND EVALUATION

SOFTWARE ARCHITECTURE

EXECUTION INSTRUCTIONS

TEST SUITE - LISTING OF TESTS
ADA PACKAGES FOR SUPPORT SOFTWARE
REPORT WRITER'S GUIDE

EXECUTION EXAMPLES
DATA GENERAL MV10000

Test Data Collection

Software Architecture
Compilation Order

Format of the Statistics Files

ii

PAGES

8-11

12-14

11
13

RN ittt aar S it A ™ AP A AP RO e S S e A SO A Anr et cee s e i DI AV A (i - A A i A

il
e PROTOTYPE ADA COMPILER EVALUATION CAPBABILITY
n l VERSION 1

USER’'S MANUAL

SECTION I: INTRODUCTION

R The purpose of the Prototype Ada Compiler Evaluation

' Capability (ACEC) is to provide users with 1) an organized suite
of compiler performance tests, and 2) support software for
executing these tests and collecting performance statistics.
These performance tests were collected by the Ada Evaluation and
Validation (E®¥V) team from several sources. The test programs,

- vhich have been in the public domain for some time, have been

E r organized as a test suite according to categories which are

- explained in Section II (Appendix A is a listing of the names

L and descriptions of all the tests in the test suite). They have

O also been instrumented to provide execution statistics. The user

can obtain differential execution statistics for the Ada language

- feature(s) used in a test by comparing different versions of the

. . test. The strategy for measuring test performance and obtaining

' differential statistics is described in Section III.

The support software that is provided with the system
consists of Ada packages (see Appendix B). This software
. includes an interface to a database of test attributes, an
. T instrumentation package designed to collect execution statistics,
S and a report writer. All of these packages should run on
; any hardware host. However, to make the Prototype ACEC complete,
; there are host/target machine-dependent modules that a user must
' provide as part of the support software. These modules are
S required in order to collect the compilation and run-time
F statistics that are only available through the operating system
a and/or software monitors for that machine. The entire support
T software architecture, including the machine-dependent modules,
s is described in Section IV.

: . The intended users of this system will be programmers

- * who are familiar with their Ada compilation system. They must
. knowv how to invoke the compiler and host/target dependent

; portions of the Prototype ACEC. A user who is familar with the S
: Ada Compiler Validation Capability (ACVC) should find that the e
- Prototype ACEC is roughly equivalent in execution complexity to o
E - the ACVC; however, the number of tests to be executed by the N

.,' BRI !.’.-‘_ 1SS ."_“,‘l_!l-' . — ' . ! . E . E .. hAA A G Gag Sl Yh Sl AN M S e i ahh i o A e i g B
.

RO
AERERES

PR
*. 'y

)
Ay %y %
»

)
s
€

LAy

Prototype ACEC is an order of magnitude less than the number in
the ACVC. General instructions for executing the Prototype ACEC
are provided in Section V.

s

Several general concepts are useful for understanding the
significance of the measurements that can be obtained from the ’
Prototype ACEC. The current view of compiler evaluation tests ,ﬁ.
is similar to the concept of benchmarks designed to demonstrate xﬁ
the performance characteristics of a computer system when it is
used for processing a typical workload. Benchmarks are programs,
or sets of programs, that are used to represent a real workload;
therefore, they are a synthetic workload which may or may not
accurately represent the future capacity and efficiency
requirements for a specific application. Typically, benchmark oG
programs provide general measurements of execution efficiency E
and are used to indicate the relative capabilities of different o
computer systems or alternative configurations. On the other RO
hand, the Prototype ACEC allows the user to measure the effect of
specific workloads on a particular computer system component, the

voa

compiler. E
The design goal for the Prototype ACEC was to collect E?-
objective, quantifiable attributes of an Ada compiler/run-time e

combination that would allow an applications developer to
evaluate the usefulness of a compiler for a future application.
The usefulness of a compiler is a function of the language
constructs that are most frequently used (i.e. required) by an {
application and the effect that they produce in demand for AR
computer resources. These most frequently used language ..
constructs are the "stress load" for a compiler which, imn turn, O
may have the effect of a "bottleneck"” in the computer system i;ij
configuration. Since applications differences lead to remarkably :xu}
1

different frequency distributions of language features, the f)
Prototype ACEC was designed to allow a user to select tests for S
specific constructs and to obtain consistent measurements for the
"costs" (e.g. time and space) associated with these constructs
wvhen they are used in various compiler/run-time combinations.

Therefore, the Prototype ACEC provides a user with two 19
options for evaluating an Ada compiler. A user may select a set 7
of tests which represents the frequency distribution of language B
constructs in a real application; or, the user may execute all =
tests to gain some insight regarding the language feature(s) T
which could be a stress load for a compiler/run-time combination,)
if these features were among the most frequently used. HOWEVER, Voo
PROTOTYPE ACEC MEASUREMENTS ARE ONLY AN INDICATION OF THE EFFECT T
PRODUCED BY AN ADA LANGUAGE FEATURE WHEN IT IS USED IN A O
PARTICULAR COMPILER/RUN-TIME COMBINATION. THESE MEASUREMENTS ARE <
NOT ABSOLUTE PERFORMANCE METRICS OF THE EFFICIENCY OF A NS
PARTICULAR COMPILER ARCHITECTURE. f}i

=
2 ‘icf

DN

o T Tt - B N G o “ e . R I RIS . . N SN IR LI
AP AP A APPSO PP TR TR P P TS T SN P VT VR T N W iV W e U S W B AR TR, g BRI LJ

B ACRACH RN ASNF AR A i Mas A il Wl A M Ak Sty s v 40 e Nty il SR 9 S T TR TR T T TS SRR es———,

s VR

f: SECTION II: TEST CATEGORIES AND ATTRIBUTES

ﬂ t This section discusses the architecture categories that
- have been established for the Prototype ACEC test suite and the
attributes of these tests which are available through the support
o software. The attributes of each test unit are keyed to the

O category and sub-category classification of that test. e

s o

| L ! L
A. ARCHITECTURE CATEGORIES s

Test units have been organized into two major groups based]
upon the information that the test unit will provide to the
. user. The first group of tests will provide information about g;ﬁ
I language features that must be present in a compiler if it is a L
full implementation of the ANSI/MIL-STD 1815A. Therefore, these -
tests are called "normative" since they will produce the lowest
level of measurement statistics that can be collected to
characterize the performance of a conforming compiler. The

. second group of tests will provide information about combinations s
ol of language constructs and/or compiler features that may be of .
; interest to applications developers. These tests are called .;f*
- "optional."” These two major categories, normative and optional,

i have been further sub-divided based upon the type of measurements R
: that can be derived from the tests. A description of each T
category and sub-category is given below: R

A.1 ©NORMATIVE

Normative tests will provide a means for determining o
o the system cost for a particular language feature. The user T
> should execute all normative tests to obtain a quantitative o
I ' & indication of the usefulness of a compiler. There are two £
types of tests in the normative category: T

A.l.1 Sub-category: PERFORMANCE

Performance tests will collect speed and space
attributes for various Ada language features. E

e

A.l1.2 Sub-category: CAPACITY

Capacity tests will indicate the limitationms
imposed by the compiler and the run-time system on -
applications developers (e.g. levels of recursion, size '
of stack, etc.). Note that these tests may overlap with AR
the ACVC, class D tz2sts.

'R

B &

_,4'., o
-y

ad s s

vev. =

.................. s
. B . L
.....................

. - “ .
[I I S AN I S St B Bl T TP s I B PR

A.2 OPTIONAL

Optional tests may be selected by a user to represent
an applications profile comnsisting of most frequently used e
language features. They have been included in the Prototype T
ACEC test suite to provide measurements which are consistent -
with normative tests.)

A.2.1 Sub-category: FEATURES i

Features tests provide measurements of optional o
language features (features which are not a required part R
of an Ada compiler). They also provide measurements of
the effects of certain compiling options. Refer to
Chapter 13 of the Ada LRM for examples of optional o
language features. L

A.2.2 Sub-category: SPECIAL ALGORITHMS

Special algorithms tests are combinations of
language constructs that are characteristic of synthetic Lo
benchmark programs. They include svch widely known i '
benchmarks as Whetstone and the Sieve of Eratosthenes. i

B. TEST ATTRIBUTES

For each test there are attributes, including an i'

architecture category as described above, that provide a user RO
with descriptive information about that test. These R
attributes are stored in a database of test names, and are -g{@
available via the report writer. They can also be used as search RS
criteria for selecting a set of tests with a specified attribute L
(see Appendix C under the description of the "LIST" option). The t’ '
attributes are listed below: EAEN

B.1 DESCRIPTION - A description of the test objective. e
B.2 ARCHITECTURE CATEGORY - Code indicating membership in a -,-{
major test category and a particular sub-category. i

B.3 E&V CRITERIA - The evaluation criteria for this test,
according to the list developed by the E®V Team. Only
certain Efficiency criteria were found to be applicable.

The Prototype ACEC does not cover all of the Ada N

NERES
B.4 LANGUAGE FEATURE - The language feature(s) being tested. P
1

language features.]

................
............

- Y - . IR L R R . o e . . - N . e T e e
Aad el el e ad s s g sy N e At ot a2 P S R A DR S W S S S R N S P ST A S P P

T T TTTTTT—— MM i s m -l o e e

B.5 VERSION - Identification of whether this is the test or e
the control program, or the test with an optimization T
feature (see Section III). R

STATISTICS TYPE - A description of the kind of S,
statistics being collected (Compilation, Execution, or N-ﬁ
Both). e,

R TP
it Lniitnad.

o
——

v
LN
PR BV

b E 1

ST

...

o W e e e

S
» .
-——

,.';r-
|

[} l'\s

SECTION III: DATA COLLECTION AND EVALUATION

The individual Ada main procedures that comprise the
Prototype ACEC test suite were adapted from test programs that T
have been in the public domain for some time.(*) Each of these h
procedures (a test unit) can provide compilation and execution e
statistics. The ability to collect data is determined by the el
facilities of the host/target environment and the Ada support N
software in the Prototype ACEC. £

Figure 1 (see page 7) shows the data collection scheme for -
a single test. The figure indicates the location of clock ;
[measurements used to derive the various elapsed and cpu times.
ii Also shown are the possible size measurements of objects created

or used in compiling and executing a test. Note that only the
instrumentation elapsed time is calculated by the provided
software; all other statistics must be determined by some

i host/target dependent mechanisms. (See Section IV and Appendix B
- for a description of the support software functionality and
interface specifications for the host/target environment.)

The data collected for an individual test is not of much
use unless used in a differential strategy which filters out
aspects of compilation and execution that are not caused by the
specific feature under evaluation. To make this strategy
possible, most tests have more than one version. The first
version, the control, is structured like the other versions of
the test, but does not contain the specific feature being tested.
The other versions (there may be only one) of the test contain
the language feature, with or without various optimizatioms.
Once the data for at least two versions has been collected, a
statement can be made about the feature under test.

Lo U
A
St

For instance, suppose the control version of an integer
addition test takes 0.15 seconds to execute, while version 2 of o
the same test, the test version, takes 0.25 seconds to execute. e
This would indicate that the execution overhead for having the :
integer additions was 0.10 seconds. If version 3, with the
PRAGMA SUPPRESS, executed in 0.23 seconds, it could be said that
0.02 seconds were saved by use of this optimization. This same
type of differential measurement strategy is used on the other
time and size data to form conclusions about the time and space
"costs"” of the Ada language feature being tested.

AR
b

(*) These original tests were written by many people with S
different styles and objectives. Minimal changes were made to >
these tests to adapt them to the test suite architecture. New
tests were not written for this Prototype ACEC.

6

............................
............................

Figure 1 e

Test Data Cotlection

(TEST
ELR:SEU UNIT

P TINES ¢
CLOCK
CONPILATION
CLOCK
08.JECT GENERATED]
(O0E ‘
SI2E CODE)
CLOCK ‘
LOADING ||
ELABORATION b -~
i - ELRPSER It
g EXECUTION : (o N
ELAPSED EXECUTION IMAGE INAGE , |\ oumnes R
¢ SIZE o~ R
CPU TINES ! 1 . _.‘_:J
. ; o
EXECUTION | i f SN
CLOCK 0 ' o
~ i : :]
/ VORKING : i]
WORKING DATA patg ——— ; RN ’-.1
SIZE : : L;«
CLOCK
COMPILATION] INSTRUMENTATION (" omrmme
L STATISTICS STATISTICS L STATISTIS s
: i . ‘:1
v]
. REPORT ‘

WRITER

REPORT

E T P N e TS RSP WY e T . B S S S e . ST et et e tat .
.- A A I A A I .2t . - AR VR R, P T A L T T R L - et
PR IS I N IS SUREJPUL S IPUE L IR LI LI R L PN Py PRI W NP Wy W Y S D S W > e PV ST SR S S . W1

EACIC AR AN e e a AR S et .'I.‘I_._.'_..'_q_Ivl_l‘.‘!._! LSS A I I B AT T Kd TRACR I A e Sen e Sant o e A Jhhe doke ¥

92 e Jhe it macp AnCi

Fri

X
22

e T PN 4 ol
X
~a s

SECTION IV: SOFTWARE ARCHITECTURE

.I' *‘

[
.'.a_' , L

The Prototype ACEC consists of several software components,
some of which are provided in Ada source code, and some of which
are necessarily implementation-dependent. Figure 2 (see page 9)
is a representation of the software components and their
interrelation.

v Tee l.l.
-
i

NAN
I‘:.."."
R

%

.
v
a

o
A
e

LRl

In reference to Figure 2, the software components provided
as Ada source code are the database package, the report writer,
: the instrumentation package, and the set of benchmark tests. The
& database package and the instrumentation package are not Ada main
R programs; rather, they are library packages. The database
i A package is intended primarily for use by the report writer, but

-m-
1

Ll

ety
At

ey

is available for use by the selector as well. In contrast, the
. instrumentation package is intended for use solely by the iy
- benchmark test programs themselves. The report writer and the

benchmark tests are Ada main programs. The report writer,
database package, and instrumentation package are described in
oo more detail below. Instructions for executing the support

o) t software are provided in Section V.

-y L e
LI B

= The Database Package: 0N
[- The database package provides basic facilities to retrieve e
: information about a named benchmark test. The information
available through the database package corresponds to the
attributes described in Section II. 1Included are a one-line r
description of the test, the architecture category that the test &
falls under, the E®V Criteria that the test provides information
about, the language feature(s) that the test examines, the
version of the test that this particular program represents, and
an indication of what statistics are expected to be collected for 3
this test. This package is contained in the file DATABASE.ADA i
and depends on the library package(s) contained in the files
LIST_PACKAGE.ADA and SCHEMA.ADA.

The Instrumentation Package:

The instrumentation package provides a simple start-stop SN
timing facility based on the built-in clock capabilities of the e
Ada package CALENDAR. This facility determines the total time -
that has elapsed during execution. The instrumentation package
also provides a package CPU_TIME.ADA for collecting the cpu time
used during execution.

The CPU_TIME.ADA package that comes with the system L
contains a dummy function called CPU_CLOCK that returns the i

value 0.0. In order to collect meaningful results, the user will N
have to replace the dummy CPU_CLOCK with a new CPU_CLOCK
function that accesses the system accounting informationm. =

However, this replacement is not required; the system will
function properly with the dummy function.

- ,,.'.{-/ ..

Ve

...

Figure 2 S

Software Architecture ;I:

AL
" [
«

SELECTOR S
: 3
., -:

LAy,
« 1 il
(3 4

DATABASE

o]
(oo]

COMPILER REPORT

i
I WRITER
—»

i . :
| i !
TEST DATA !

i |

|

i

|l

1 ; g
' J : : ‘-t_[<
EXECUTOR INSTRUMENT } ! ; -

[srrr
4 - - v ' ~- =,
BT DATA : Tas
(TEST DATA)

ST ! !

F’”
L

LEGEND

G CONTROL [] INPLEMENTATION-DEPENDENT HODULES
+— DATA FLOW > INTERFACE FORMAT PROVIDED 2
[] rrovioeo aoa souece cooe

-

S ey eyt e et "f".-,--‘..;u. e e, et _.;.-} . ..‘;J‘_:. e e T e e e e e e e . R .
. CORr N ORI COLSE SR et e T e e e LT a EETSPAY - BRI . ole el
R, S0, S P R AR R PO P LI P A AR SR AP S AU ORI O AN PSARNRE,

: r__v.-ﬁ—.j m——
.] . ‘ i . v

The instrumentation package is not intended for use outside
of the test suite. It is contained in the file INSTRUMENT.ADA
and depends on the library package(s) contained in the file
IO_PACKAGE.ADA.

The Report VWriter:

The report writer is the visible interface to the user. 1Its
function is to report both collected statistics and desired
database attributes. A detailed explanation of the report writer
and how to use it is given in Appendix C. The report writer is
contained in the files INQUIRY.ADA and REPORT_WRITER.ADA. 1In
addition, it depends on the library package(s) contained in the
files DATABASE.ADA, ATTRIBUTE.ADA, and IO_PACKAGE.ADA.

Figure 3 (see page 11) presents the compilation
dependencies of the packages provided with the test suite.

The remaining software (the compiler, the executor and the
selector) is necessarily machine-dependent, and must be provided
by the user. In reference to Figure 2, the compiler is that set
of software that compiles a single benchmark test and stores the
collected compilation statistics in a file. Similarly, the
executor is that set of software that executes a single test and
stores the collected run-time statistics in a file. Interface
specifications for formatting the collected data, if this data is
available, are given in Section V. The selector is the overall
"system manager" that chooses tests to be run and operates the
compiler and executor. It makes the compilation and run-time
statistics files available to the report writer. As mentioned
previously, the selector may also be used to access the database
directly.

Typically, the selector will consist of both software and
human input. For our example on the MV10000 AOS/VS system, we
chose the tests ourselves, and ran a test harness to manage the
running of the compiler and executor. The test harness also
reformatted the system accounting information to comply with the
interface specifications required by the report writer. The term
"test harness” refers to the portion of the selector that sends
tests through the compiler and executor. Test harness examples
are provided in Appendix D.

The executor is the series of system specific commands
needed to execute a compiled program and collect the resulting
statistics. 1In environments where host and target are different
machines, this sequence of steps can be quite complex.

10

"I S LN

., r 4

-

.........

Figure 3

Compilation QOrder

LIST_PACKAGE. ADA

SCHEMA. ADA

|
N

DATABASE. ADA ATTRIBUTE. ADA 10_PACKAGE. ADA TP, ADA ¥

i 1
N o
\' . ,/, /

' . \‘ ‘/
INQUIRY. ADA INSTRUMENT. ADA

| |
\j

REPORT_WRITER. ADA Benchmark test(s)
(eg. ADDSA1.ADA)

» See Section IV under the description of "The
Instrumentation Package”

note: In order to compile a particular package, the package(s;

pointing to it must be compiled first.

".-, e e e -
. L
efa

.I‘J' fy .,
) s 0 ¥
: 'l’}lx{l:l'l'l
Ll s A

[9]
.

IFPSPRFereT N

o« 87

. . e e
T U
. -,'.'.'.'.'-'.
IR

Y ST APRSIeT

.................

SECTION V: EXECUTION INSTRUCTIONS

This section of the User'’'s Manual provides basic
instructions for executing the Prototype ACEC system. These
instructions will help the users to 1) identify the software
modules that must be produced, 2) become aware of the various
options within the system, and 3) gain an overall view of how
this evaluation system works.

The system specific test harness mentioned in Section IV
processes the benchmark tests and collects system resource
statistics. On most systems, the test harness will comnsist of
one or more operating system command files that will compile and
execute each test program.

Different operating systems make various accounting
information available to their users. This information can be
an important part of the evaluation statistics gathered by the
benchmarks. The statistics which are generated can be captured
and stored in text files. These files, 1f available, will
become input to the report writer. The format for each of these
text files - the "TEST DATA" blocks in Figure 2 (see page 9) -
is specified in Figure 4. NOTE: The user-defined filenames must
be EXACTLY six characters long.

With these interface files well defined, the portable
report writer software will be able to report as much data as can
be collected by the host and target environments. On those
systems where such accounting information is unavailable or
difficult to obtain, the report writer will still function
(although the lack of statistics will seriously degrade the
usefullness of the Prototype ACEC system).

The Compilation Statistics:

Compilation statistics may be available from the compiler
that is being evaluated, or they may be available from host
system accounting information. In either case, there must be
some host-dependent software to convert the statistics into the
file format expected by the report writer. Figure 4a (see page
13) defines this format. These statistics must be appended onto
a user-defined compilation file after each test is compiled. If
parts of this information are not available, dummy values (such
as 0) must be placed in the file in order for the report writer
to use the file.

The Instrumentation Statistics: e

Each test program utilizes an instrumentation package which e
reports the elapsed execution time of the test program. This T
data is collected from the function CLOCK of package CALENDAR.

12

v 4t e S
ettt
PSSP Y

Figure 4

Formats of the Statistics Files

For all three of the statistics files, each line of the file contains a
sequence of fields separated by one or more spaces:

(a) The Compilation—Time Statistics File

. Test name (6 characters)

. Total eiapsed time, in seconds *
. Totai cpu time, in seconds *

. Object code size, in bytes ==

-

. Comments, a string of (up to) 120 characters

(& L I N & R

(o) The Instrumentation Statistics File

1. Test name (6 characters)

2. Total elapsed time, in seconds *

3. Total cpu time, in seconds *

4, Comments, a string of {up to) 120 characters

(c) The Run—Time Statistics File

Test name (b characters)

Total elapsed time, in seconds *

Total cpu time, in seconds *

Execution image size, in bytes »*

Warking data size, in bytes =*

Comments. a string of (up to) 120 characters

[) BN) B O % B o8 B

* The report writer currently displays these real numbpers with an
accuracy of 1/100th of a second

** |nteger numbers

..
...
...............................
- S PO W P »

If available, CPU time can also be reported by modifying the
package CPU_TIME which is provided in the support software. This
package contains the function CPU_CLOCK which can be replaced to
return the execution cpu time using some host/target dependent
facility. (The CPU_CLOCK function that is provided returns the
dummy value 0.0). This data is automatically written onto a file
named "INSTR" at the end of the execution of the test program.
NOTE: The contents of this file ("INSTR") MUST be appended onto
a user-defined instrumentation file after each test program is
TUun. Tge instrumentation file format is shown in Figure 4b (see
page 13).

The Run-time Statistics:

These statistics are meant as a supplement to the
instrumentation statistics. Run-time statistics are collected
and properly formatted by host/target dependent mechanisms. :
Again, these statistics must be appended onto the user’'s run-time bl
statistics file after each test program is run. Uncollectable -
data must be entered as dummy values in the run-time file. The

format of this file is given in Figure 4c (see page 15). ;;f
-3

Performing the Evaluation: b
To start the evaluation process, the Ada code for the]

support software must be compiled onto an Ada library. Figure 3

(see page 11) gives the compilation order. Next, the user may

develop the command files (the test harness) to help execute the R
ACEC system. Once the full test harness is ready, tests can be =
compiled and executed with all the generated statistics being Frﬂl
captured in text files. After any number of test programs have .

been processed, the report writer should be executed with the
collected data files as input. The report writer and the test
harness can be re-run any number of times and in any order to

produce the final evaluation report(s). L

T

]

£ -4

A

)

5_}

R

b

R

o

ro

T

14 .
g

APPENDIX A: TEST SUITE - LISTING OF TESTS

i ‘ This is a list of the benchmark tests that are currently in

.. the database. Included are the test names and descriptions. The
test names in the database are the same as the file names
containing the Ada main programs.

Each test name has three parts. The first four characters
describe the test characteristic. Where possible, these four
characters are organized into a mnemonic (i.e. SIEV => Sieve of
Eratosthenes). Otherwise, an acronym has been constructed (i.e.
BRUA =, Block Reference to an Uplevel variable, Access type).
The fifth character is a letter that represents a difference in
. the number of occurrences of the test characteristic. For
i example, LAVRAl performs one local array variable reference,

while LAVRB1 performs ten references. The sixth character is the
version number. Version 1 is the control version and version 2
is the test version. The other versions (3, 4, etc.) test for
the effects of certain compiler features (i.e. PRAGMAS).

ADDSA1 10_000 floating pt. Additions (control)
ADDSA2 10_000 floating pt. Additioms (test)
ADDS23 10_000 floating pt. Additions (pragma suppress)
‘ AKERA2 Ackermann function (test)
I B AKERA3 Ackermann function (pragma suppress)
ot AOCEA1 Arith. Optimization, Const. Elim. (control)
AOCEA2 Arith. Optimization, Const. Elim. (test)
AOIEAl Arith. Optimization, Invariant Elim. (control)
AOIEA2 Arith. Optimization, Invariant Elim. (test)
. ASSIA2 500 ASSIGNMENT STMTS (1 PER LINE)
l [ASSIA3 500 ASSIGNMENT STMTS (5 PER LINE)
o ASSTA4 500 ASSIGNMENT STMTS INTERJECTED WITH COMMENTS
ASSIA5 500 ASSIGNMENT STMTS PRECEEDED BY 500 COMMENTS
ASSIB2 1000 ASSIGNMENT STMTS INTERJECTED WITH COMMENTS
BALPAl EVALUATES THE EFFICIENCY OF A SIMPLE LOOP STATEMENT

N (CONTROL) R
[BALPA2 THIS TEST EVALUATES THE EFFICIENCY OF A SIMPLE LOOP E_)
- STATEMENT (TEST) 38
BLEMA2 65 EMBEDDED BLOCKS i@
BRUAA1 Block Ref. to an Uplevel var., Access type (control) -
BRUAA2 Block Ref. to an Uplevel var., Access type (test) T
BRUNA1 Block Ref. to an Uplevel var., Non-access type (control) N

5 BRUNA2 Block Ref. to an Uplevel var., Non-access type (test) ’
BSRCA2 TEST BINARY SEARCH PKG AT EXTREME LIMITS OF ITS INDEX K
TYPE: LOWER RS
BSRCA3 TEST BINARY SEARCH PKG AT EXTREME LIMITS OF ITS INDEX o
TYPEE: UPPER Y
N C31PA2 CHECKS THAT 31 PARAMETERS CAN BE PASSED -

il CAPAAl Constrained Array Param. Assoc. w/3 elements (control)

A.l

L

..

CAPAA2
CAPAB1
CAPAB2
CASEA2
CENTA2
CENTB2
CHSSAl
CHSSA2
CHSSAS
CSBTAl
CSBTA2
CSCTAl
CSCTA2
CSDTAl
CSDTA2
CSETAl
CSETA2
CSSTAl
CSSTA2
CSSTB1
CSSTB2
CSSTC1
CSSTC2
CSSTD1
CSSTD2
CSSTEl
CSSTE2
DRPCA1
DRPCA2

F1IUALl

F1IUA2
FACTAl
FACTA2
FL2RAl
FL2RAZ2
FLP1Al
FLP1A2
FLP2A1l
FLP2A2
FPAAAL

FPAAA2
FPAAB1

FPAAB2

Constrained Array Param. As
Constrained Array Param. As
Constrained Array Param. As
CHECKS A CASE STAMTEMENT OF
CHECKS AN ENUMERATION TYPE

CHECKS ENUMERATION TYPES UP
Char. String Search (contro
Char. String Search (test)

soc. w/3 elements (test)
soc. w/63 elements (control)
soc. w/63 elements (test)
SIZE 256
OF 256 ELEMENTS

TO 2000 ELEMENTS
1)

Char. String Search (pragma suppress)

Case Statement Binary Test
Case Statement Binary Test
Case Statement Cluster Test
Case Statement Cluster Test
Case Statement Dense Test (
Case Statement Dense Test (

(control)
(test)
(control)
(test)
control)
test)

Case Statement Exhaustive Test (control)
Case Statement Exhaustive Test (test)

Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Case Statement Sparse Test
Direct Recursive Procedure
Direct Recursive Procedure
EFFICIENCY OF LOOP STMT,FOR
(CONTROL)

w/range 1..5 (control)
w/range 1..5 (test)
w/range 1..20 (control)
w/range 1..20 (test)
w/range 1..50 (control)
w/range 1..50 (test)
w/range 1..500 (control)
w/range 1..500 (test)
w/range 1..5000 (control)
w/Tange 1..5000 (test)

Call (control)
Call (test)
,LLOOP PARAM USED IN LOOP BODY

EFFICIENCY OF LOOP STMT, FOR, LOOP PARAM USED IN LOOP BODY
RECURSIVE FACTORIAL FUNCTION (CONTROL)
RECURSIVE FACTORIAL FUNCTION

EFFICIENCY OF A FOR LOOP STMT , REVERSE, 2 ITERATIONS

(CONTROL)

EFFICIENCY OF A LOOP STMT U
ITERATIONS

EVALUATES THE EFFICIENCY OF
(CONTROL)

EVALUATES THE EFFICIENCY OF
ITERATION

EVALUATES THE EFFICIENCY OF
(CONTROL

EVALUATES THE EFFICIENCY OF
ITERATIONS

Formal in/out Param. Assoc.
(control)

Formal in/out Param. AssocC.
Formal in/out Param. AssocC.
(control)

Formal in/out Param. AssocC.

A.2

SING FORR, REVERSE, 2

A LOOP STMT USING FOR, 1 ITER.
A LOOP STMT USING FOR, 1

A LOOP STMT USING FOR, 2 ITER.
A LOOP STMT USING FOR, 2

PO LT S

-

w/1 param., Access type

w/1l param., Access type (test)
w/2 param., Access type

w/2 param., Access type (test) F

Ny T T o r—e

L2

"TEKYT

v

B IO NS O

T '
RRCACMARER TS SRR
e Ce
BN . oo

B A
PR

B S

i C

o TR

Pl
P L

FPAAC]

FPAAC2
FPAAD1

FPAAD2
FPANA1
FPANAZ2
FPANB1
FPANB2
FPANC1
FPANC2
FPAND1
FPAND2
FPRAA1
FPRAA2
FPRNA1
FPRNA2

GVRAAL
GVRAAZ

GVRNA1L.

GVRNAZ
IADDA]
HSDRAZ
IADDA2
IDIVAlL
IDIVA2
IEXPAl
IEXPA2
IMIXAl
IMIXAZ2
IMIXBl
IMIXB2
IMIXC1
IMIXC2
IMIXD1
IMIXD2
IMIXE]l
IMIXE2
IMODAl
IMODA2
IMULAL
IMULA2

Formal in/out
(control)
Formal in/out
Formal in/out
(control)
Formal in/out
(test)

Formal in/out
(control)
Formal in/out
(test)

Formal in/out
(control)
Formal in/out
(test)

Formal in/out
(control)
Formal in/out
(test)

Formal in/out
(control)
Formal in/out
(test)

Formal in/out
Formal in/out
Formal in/out
Formal in/out

Global Var. Ref., Access type

Param. Assoc.

Assoc.
Assoc.

Param.
Param.

Param. AssocC.

Param. AssocC.

Param. AssocC.

Param. AssocC.

Param. AssocC.

Param. Assoc.

Param. AssoOC.

Param. Assoc.

Param. AssocC.

Parameter Ref.
Parameter Ref.
Parameter Ref.
Parameter Ref.

——————

w/5 param., Access type

w/5 param., Access type (test)

Ty ey ey

w/10 param., Access type

w/10 param., Access type

v/l param.,
w/1 param.,
w/2 param.,
w/2 param.,
w/5 param.,

w/1 param.,

Non-access
Non-access
Non-access
Non-access
Non-access

Non-access

type
type
type
type
type
type

w/10 param., Non-access type

w/10 param., Non-access type

- w e

Access type (control)
Access type (test)
Non-access type (control)

, Non-access type (test)

Global Var. Ref., Access type (test)
Global Var. Ref., Non-access type (control)

Global Var. Ref., Non-access type (test)

Integer Addition (control)
HEAPSORT BENCHMARK TEST DRIVER USES XOBMHSPK
Integer Addition (test)
Integer Division (control)
Integer Division (test)
Integer Exponentiation (control)
Integer Exponentiation (test)

Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed
Integer Mixed

Expressions 01
Expressions 01
Expressions 02
Expressions 02
Expressions 03
Expressions 03
Expressions 04
Expressions 04
Expressions 05
Expressions 05

Integer Modulus (control)
Integer Modulus (test)
Integer Multiplication (control)
Integer Multiplication (test)

.~

A3

(control)
(test)
(control)
(test)
(control)
(test)
(control)
(test)
(control)
(test)

(control)

B o ATRTRTE T
e RPN
R
s e e

Ty

IREMA1
INTDA2
INTDB2
INTDB3
INTQA2
IREMA2
ISEQA2
ISUBAl
ISUBA2
LAVRA1
LAVRA2
LAVRB1
LAVRB2
LFIRA1
LFIRA2
LFSRA1
LFSRA2
LOAEA1
LOAEA2
LOECA1
LOECA2
LOFCA1
LOFCA2
LONEA1
LONEA2
LOSCA1
LOSCA2
LOUIAl
LOUIA2
LOUSA1

Lousaz2”

LRR1A1
LRR1A2
LRR2A1
LRR2A2
LRR3A1
LRR3A2
LVRAA1
LVRAA2
LVRAB1
LVRAB2
LVRNA1
LVRNA2
LVRNB1
LVRNB2
MINIA2
MTCQA2
MTESA2
MTISA2
MULTA1
MULTA2
MULTA3

Integer Remainder (control)

CHECKS 150 INTEGER DECLARATIONS

500 DECLARATION STMTS FOR INTEGER

500 DECLARATION STMTS FOR INTEGER (10 PER LINE)
TEST A FULL INTEGER QUEUE USING XOQUE PACKAGE
Integer Remainder (test)

TEST GENERIC SEQUENCE MANIPULATION PACKAGE, 50 INTEGERS
Integer Subtraction (control)

Integer Subtraction (test)

1 Local Array Var. Ref. (control)

1 Local Array Var. Ref. (test)

10 Local Array Var. Ref. (control)

10 Local Array Var. Ref. (test)

Loop Fuse, Index Ref. (control)

Loop Fuse, Index Ref. (test)

Loop Fuse, Scalar Ref. (control)

Loop Fuse, Scalar Ref. (test)

Loop Optimization, Asst. Eval. (control)

Loop Optimization, Asst. Eval. (test)

Loop Optimization, Expr. Calc. (control)

Loop Optimization, Expr. Calc. (test)

Loop Optimization, Function Call (comtrol)

Loop Optimization, Function Call (test)

Loop Optimization, Nested Expr. comp. (control)
Loop Optimization, Nested Expr. comp. (test)
Loop Optimization, Subscript Calc. (control)
Loop Optimization, Subscript Calc. (test)

Loop Optimization, Unroll Index ref. (control)
Loop Optimization, Unroll Index ref. (test)
Loop Optimization, Unroll Scalar ref. (control)
Loop Optimization, Unroll Scalar ref. (test)
First-level Local Record var. Ref. (control)
First-level Local Record var. Ref. (test)
Second-level Local Record var. Ref. (control)
Second-level Local Record var. Ref. (test)
Third-level Local Record var. Ref. (control)
Third-level Local Record var. Ref. (test)

1 Local Var. Ref., Access type (control)

1 Local Var. Ref., Access type (test)

10 Local Var. Ref., Access type (control)

10 Local Var. Ref., Access type (test)

1 Local var. Ref., Non-access type (control)

1 Local Var. Ref, Non-access type (test)

10 Local Var. Ref., Non-access type (control)
10 Local Var. Ref., Non-access type (test)
MIMIMAL PROGRAM WITH 1 STMT , 1 DECLARATION
TEST EMPTY CHARACTER QUEUE USING XOQUE PACKAGE
TEST EMPTY SET OF ENUMERATION TYPE USING XOSET PACKAGE
TEST EMPTY SET OF INTEGERS USING XOSET PACEKAGE
10_000 floating pt. Multiplications (control)
10_000 floating pt. Multiplications (test)
10_000 floating pt. Multiplications (pragma suppress)

A.4

L. T et e e . o . R A T T I .
. PRI AL I PRSP S AP WL I SIS P SIS R PR P P Py

A

®

T TSR NS CR OV TV L TV O Y e v,
.
S

e e e e e e et e e e L s e

Y

Thath o akia

.........
..........................

A.5

P A e M A A e e 8 o A A S A R M Ao At et e e e Bt e b A aee I A de e St
NLOOA1l Overhead for Nested Loops - NO loops (control)
NLO7A2 Overhead for 7 Nested Loops (test)

NL65A2 Overhead for 65 Nested Loops (test)

NPPCA1l No Parameter Procedure Call (control)

NPPCA2 No Parameter Procedure Call (test)

NRPCA1l Nested Recursive Procedure Call (control)

NRPCA2 Nested Recursive Procedure Call (test)

NULLAl NULLPROCEDURE (CONTROL)

NULLA2 CALL TO NULL PROCEDURE

OPAEAl1l Optimization Perf., Arith. Elim. (control)

OPAEA2 Optimization Perf., Arith. Elim. (test)

OPBFA1 Optimization Perf., Bool. Folding (control)

OPBFA2 Optimization Perf., Bool. Folding (test)

OPCEAl1 Optimization Perf., Call Elim. (control)

OPCEA2 Optimization Perf., Call Elim. (test)

OPCFA1l Optimization Perf., Constant Folding (control)

OPCFA2 Optimization Perf., Constant Folding (test)

OPDSA1 Optimization Perf., Distributed Simp. (control)

OPDSA2 Optimization Perf., Distributed Simp. (test)

OPISAl1 Optimization Perf., Identity Simp. (control)

OPISA2 Optimization Perf., Identity Simp. (control)

OPLEAl1 Optimization Perf., Load Elim. (control)

OPLEA2 Optimization Perf., Load Elim. (test)

OPNFA1 Optimization Perf., Num. Folding (control)

OPNFA2 Optimization Perf., Num. Folding (test)

OPSCAl1 Optimization Perf., Subscript Cale. (coantrol)

OPSCA2 Optimization Perf., Subscript Calc. (test)

OPSEAl1 Optimization Perf., Store Elim. (control)

OPSEA2 Optimization Perf., Store Elim. (test)

PGQUA2 TEST PUT_END AND GOT_END WITH AN ENUMERATED TYPE USING
XOQUE PKG

PIALA2 PI Algorithm (test)

PKGEA1 EACH PACKAGE BODY FOLLOWS DIRECTLY AFTER THE PKG SPEC
(CONTROL)

PKGEA2 EACH PACKAGE BODY FOLLOWS DIRECTLY AFTER THE PKG SPEC

PKGSA1 PACKAGE BODY SEPARATED FROM PACKAGE SPEC. (CONTROL)

PRKGSA2 PACKAGE BODY SEPARATED FROM PACKAGE SPEC

PRCOA2 PRODUCER/CONSUMER PROBLEM

PRPCAl1 Parallel Recursive Procedure Call (control)

PRPCA2 Parallel Recursive Procedure Call (test)

PRUAA1 Proc. Ref. to an Uplevél var., Access type (control)

PRUAA2 Proc. Ref. to an Uplevel var., Access type (test)

PRUNA2 Proc. Ref. to an Uplevel var., Non-access type (test)

PRUNA1 Proc. Ref. to an Uplevel var., Non-access type (control)

SIEVAl Sieve of Eratosthenes (control)

PU22A2 PUZ2ZLE

PUZ2ZA3 PUZZLE (PRAGMA SUPPRESS)

RANDAZ2 RANDOM NUMBER GENERATOR

RCDSA2 CHECKS 400 FIELD RECORDS

RENDA1 SIMPLE RENDEZVOUS (CONTROL)

RENDA2 SIMPLE RENDEZVOUS

SHARA2 READERS/WRITERS PROBLEM

.......

N
L
N
‘l?
"d
‘4
y
1
P
F,
‘A
o4
’l
A
¥
‘!
g
! 4
/]
1
-
o
-
-
4
-
A
q
q
4
[
h|
L |
I
L |
4
1
)
q
{
]
4

LNEMANES A0NGcRe: o

1.

—TTT TR T
. A L Lt N
* M B e

N ot

SIEVA2
SORTA2
SQ10A2

SQPGA2
SRCRA1
SRCRA2
SRTEA1
SRTEA2
TAIPAl
TAIPA2
TAIPB1
TAIPB2
TAIPC1
TAIPC2
TAIPD1
TAIPD2
TAIPE1l
TAIPE2
TAIPF1
TAIPF2
TAIPGl
TAIPG2
TAOPAl
TAOPA2
TAOPB1
TAOPB2
TAOPC1
TAOPC2
TAOPD1
TAOPD2
TAOPE1
TAOPE2
TAOPF1
TAOPF2
TAOPG1
TAOPG2
TPGTA2
TPGTB2
TPGTC2
TPGTD2
TPITAl
TPITA2
TPITB1
TPITB2
TPITC1
TPITC2
TPITD1
TPITD2
TPOTA2
TPOTB2
TPOTC2

o

. . "
.l e
NI

A L

DY N}

Sieve of Eratosthenes (test)

TEST INSERTION SORT USING XOSORT PACKAGE

PUT 10 INTEGERS IN SEQUENCE AND TEST IF EMPTY USING XOSEQ
PACKAGE

PUT AND GET 10 INTEGERS IN SEQUENCE USING XOSEQ PACKAGE
Simple Record Component Ref. (control)

Simple Record Component Ref. (test)

Simple Record Type Elaboration (control)

Simple Record Type Elaboration (test)

Task Perf. w/l element Array ‘in’' Param. (control)

Task Perf. w/1 element Array ‘in’ Param. (test)

Task Perf. w/32 element Array ‘in’ Param. (control)

Task Perf. w/32 element Array ‘in’ Param. (test) e
Task Perf. w/64 element Array ‘in’ Param. (control) .
Task Perf. w/64 element Array 'in’ Param. (test) N
Task Perf. w/320 element Array ‘in‘’ Param. (control) .
Task Perf. w/320 element Array ‘in’ Param. (test) g
Task Perf. w/640 element Array ‘in’ Param. (control)
Task Perf. w/640 element Array ‘in‘’ Param. (test)

Task Perf. w/3200 element Array ‘in’ Param. (control)
Task Perf. w/3200 element Array 'in’ Param. (test)

Task Perf. w/6400 element Array ‘'in’' Param. (control)
Task Perf. w/6400 element Array ‘'in’' Param. (test)

Task Perf. w/l1 element Array ’'in out’ Param. (control)
Task Perf. w/1 element Array ‘in out’' Param. (test)
Task Perf. w/32 element Array 'in out’ Param. (control)
Task Perf. w/32 element Array 'in out’' Param. (test) :
Task Perf. w/64 element Array 'in out’' Param. (control) .
Task Perf. w/64 element Array ’'in out’ Param. (test)
Task Perf. w/320 element Array ‘in out' Param. (control)
Task Perf. w/320 element Array ‘in out’' Param. (test)
Task Perf. w/640 element Array ‘in out’ Param. (control)
Task Perf. w/640 element Array ‘in out' Param. (test) S
Task Perf. w/3200 element Array ‘in out’' Param. (control) P
Task Perf. w/3200 element Array 'in out’' Param. (test) L
Task Perf. w/6400 element Array 'in out’' Param. (comntrol) :
Task Perf. w/6400 element Array ’'in out' Param. (test)
Task Perf., Guard Test, 2 guards (test)

Task Perf., Guard Test, 2 guards (test)

Task Perf., Guard Test, 20 guards (test)

Task Perf., Guard Test, 20 guards (test)

Task Performance w/1 Idle Task (control)

Task Performance w/1 Idle Task (test)

Task Performance w/5 Idle Tasks (control)

Task Performance w/5 Idle Tasks (test)

Task Performance w/10 Idle Tasks (control)

Task Performance w/10 Idle Tasks (test) -
Task Performance w/20 Idle Tasks (control)
Task Performance w/20 Idle Tasks (test)
Task Perf., Order Test (test)

Task Perf., Order Test (test)

Task Perf., Order Test (test)

o E:—l.r... A
A

R

1
LM
S0

Loy

[
AN AR

. }‘"‘K'v;
L4

R R T N
i

- .

'[‘1:-,‘-. e

A.6

b TPSTA2 Task Perf., Select test (test)

- TPSTB2 Task Perf., Selact Test (test)

- TPTCA2 Task Perf., Task Chain, lenght 1 (test) e
I X TPTCB2 Task Perf., Task Chain, length 5 (test) "
- TPTCC2 Task Perf., Task Chain, length 10 (test) s
TPTCD2 Task Perf., Task Chain, length 20 (test) e

TPUTA2 Task Perf. Unknown Test (test) AR

RN TPUTB2 Task Perf., Unknown Test (test) A

” TPUTC2 Task Perf., Unknown Test (test) Ay

TPUTD2 Task Perf., Unknown Test (test)

TPUTE2 Task Perf., Unknown Test (test) s

UAPAAl1 Unconst. Array Param. Assoc. w/3 elems. (control) s

UAPAA2 Unconst. Array Param. Assoc. w/3 elems. (test) e

UAPAB1 Unconst. Array Param. Assoc. w/63 elems. (control) O

UAPAB2 Unconst. Array Param. Assoc. w/63 elems. (test) s
VFADAl1 Vector Floating pt. Addition (control) t
VFADA2 Vector Floating pt. Addition (test)

VIADA1l Vector Integer Addition (control)

VIADA2 Vector Integer Additiom (test)

rx N VPGSA2 TEST VARIOUS PUTS AND GETS IN SEQUENCE USING XOSEQ PACKAGE

kj é; WHETA2 WHETSTONE INSTRUCTIONS WITH FLOATS
b

WHETA3 WHETSTONE INSTRUCTIONS WITH FLOATS (PRAGMA SUPPRESS) £
WHLPAl1l EVALUATES THE EFFICIENCY OF A LOOP STATEMENT USING WHILE

(CONTROL) N
WHLPA2 EVALUATES THE EFFICIENCY OF A LOOP STATEMENT USING WHILE RGN

APPENDIX B : ADA PACKAGES FOR SUPPORT SOFTWARE

The package specifications for all of the Ada packages in
the ACEC are provided below.

IO_PACKAGE.ADA specification:

- - - - - - - -— - - - - - - -— - - - -_ - - - -—

with TEXT_IO;
use TEXT_I0;

-- This package abstracts I/0 operations from the Statistics files
-- defined in LIST_STATISTICS. It is a consequence 0f Ada that

-- such procedures must be defined for any structured types.

-- The package encapsulates details about file contents, layout, etc.

package IO_PACEKAGE is
~- Constants

COLUMNS : constant := 120;

-- must = SCHEMA.DESCRIPTION_LENGTH
UNIT_NAME_LENGTH : constant := 6;

-—- must = SCHEMA.NAME_LENGTH
MAX FILE _LENGTH : constant := 22;

C_HEADER : constant STRING :=

" Name Elapsed/CPU Code/Data Comments";
R_HEADER : constant STRING :=

" Name Event Elapsed/CPU Code/Data Comments";
I_HEADER : constant STRING :=

" Name Event Elapsed/CPU Comments";

-- Basic types
type Choice_Type is (START_REC, COM_REC, STOP_REC);
subtype Name_Type is STRING(1..UNIT_NAME_LENGTH);
subtype Size_Type is NATURAL; -~ integer bytes
subtype Comment_Length is NATURAL range O..COLUMNS;
subtype File_Name_Type is STRING(1l..MAX FILE_LENGTH);

BLANK_UNIT_NAME : Name_Type = (others => ‘' ');
BLANK_FILE_NAME : File_Name_Type := (others => ' ');
-- Structured types
type File_Record_Type is
record
FILE_EXISTS : BOOLEAN := FALSE;
B.1
e e L B e e T T e s e

Al
PV AW

OV N R,

ST
S
LR
B!
R
.t et
H LI
P
et
R
St

.......

P i et e et st e

A

FILE_NAME : File _Name_Type := BLANK_FILE_NAME;

INTERNAL_NAME : TEXT_IO.File_Type;
end record;

type Compilation_Record_Type(LEN : Comment_Length := 0) is

record
TEST_NAME : Name_Type := BLANK_UNIT_NAME;
TOTAL_ELAPSED_TIME: DURATION = 0.0;
TOTAL_CPU_TIME : DURATION = 0.0;

OBJECT_CODE_SIZE : Size_Type = 0;

COMMENTS : STRING(1..LEN) := (others=>' ');
end record;

type Run_Time_Record_Type(LEN : Comment_Length := 0) is

record
TEST_NAME : Name_Type := BLANK_UNIT_NAME;
TOTAL_ELAPSED_TIME: DURATION = 0.0;
TOTAL_CPU_TIME : DURATION = 0.0;
MEMORY_CODE_SIZE : Size_Type = 0;

MEMORY_DATA_SIZE : Size_Type t= 0;

COMMENTS : STRING(1..LEN) := (others => ' ');
end record;

type Instrumentation_Record_Type(LEN : Comment_Length :=10) is

record)
TEST_NAME : Name_Type = BLANK_UNIT_NAME;
IDENT : Choice_Type := START_REC;
ELAPSED_TINME : DURATION = 0.0;
ELAPSED_CPU_TIME : DURATION := 0.0;
COMMENTS : STRING(1..LEN) := (others => ‘' ');

.end record;
-- File I/0 Operatiomns

procedure Get_File_Name(FILE: in out File_Record_Type);
procedure Open_File(FILE: in out File_Record_Type;

B.2

............

LA vl ot am R py
] B T N s

ey

e P TR P T a W W Wa TR VT REN, TR Pia R s - T Sk IR khdi

MODE: in TEXT_IO.FILE_MODE := IN_FILE);

procedure Close_File(FILE: in out File_Record_Type);
procedure File_Status(FILE: in File_Record_Type);

-- Compilation I/0

procedure Get(FILE
VALUE

procedure Put(FILE
VALUE

-- Run Time I/0

procedure Get(FILE

VALUE

procedure Put(FILE
VALUE

in File_Type;
out Compilation_Record_Type);

: in File_Type:= CURRENT_OUTPUT;
: in Compilation_Record_Type);

in File_Type;
out Run_Time_Record_Type);

: in File_Type:= CURRENT_OUTPUT;
: in Run_Time_Record_Type);

-- Instrumentation 1/0

procedure Get(FILE : in File_Type;
VALUE : out Instrumentation_Record_Type):;

procedure Put(FILE :

VALUE
end IO_PACKAGE;

generic
type List_Element i

in File_Type:= CURRENT_OUTPUT;
in Instrumentation_Record_Type):

s private;

package Singly_Linked_List is

- ———— ——————— ——————————— T ——————— — ———_— T — i ——————————————— — ————

type List_Type is private;

function Empty (lis
-- Indicates whether

function Null_Node
-~ Indicates whether
-- the list.

function Head_Node
-- Indicates whether
-- the list.

t : List_Type) return Boolean;

the list contains any elements.

(List : List_Type) return Boolean;

the "current pointer" references an element in

(List : List_Type) return Boolean;
the "current pointer" references the head of

B.3

Ol R

<

BEALA

.8,

)
":’."1' -:."

F

S ree

- o
i

[
r r
AN

R
8

S A S N SN T RO AR R LA A v A o B e e SR I A At AR i A SR A S N A i e A el na S e na o e

P
ey

y

s

SN ¥
Yy ""o
y

function Tail_Node (List : List_Type) return Boolean; ©
-- Indicates whether the "current pointer" references the tail of }ih
-- the list. o
" function Current_Element (List : List_Type) return List_Element; -
re -- Returns the value of the element referenced by the "current L
-- pointer”. ool
a- -- Raises End_Error if Null Node(List) = True. S
s procedure First (List : in out List_Type); el
i -- Positions the "current pointer" at the head of the list E;ﬂ
N -- (even if the list is empty). F
= procedure Next (List : in out List_Type): ¥
-- Positions the "current pointer” at the next element in the list. o]
-- After the last element in the list Null Node(List) becomes True. .
-- Raises End_Error if Null Node(List) = True. S
procedure Insert_After (List : in out List_Type: SR
Element : List_Element): E)
-- Inserts an element after the “"current pointer". A
-- If Null_Node(List) = True the element is appended after the tail R
-- element. T
procedure Insert_Before (List : in out List_Type: S
‘ Element : List_Element); T
T -- Inserts an element before the "current pointer”. i,
-- If Null_Node(List) = True the element is prepended before the T
-- head element. R
procedure Delete_Element (List : in out List_Type): D
-- Deletes the element referenced by the "current pointer” from ‘
A -- the 1list.
. -- Upon deletion, the "current pointer" references the element L
-- after the deleted element. DA,
-- Raises End_Error if Null Node(List) = True. -]
generic O

with procedure Transformation (Element : in out List_Element);

procedure Modify (List : List_Type); L

C -- Permits modification of the element referenced by the “current [;;
' -- pointer” where the modification doesn’'t require external values e
-- (e.g. incrementing a field of the element). -

-- Raises End_Error if Null_Node(List) = True.

o

generic S

typre Update_Information is private; B

with procedure Transformation (Element : in out List_Element; P

™~ Information : Update_Information): T
procedure Update (List : List_Type; g

Information : Update_Information); -
-- Permits modification of the element referenced by the "current S

T
11 : <

. -- pointer” where the modification requires external values]
> -- (e.g. assigning a value to a field of the element). E
-- Raises End_Error if Null_Node(lList) = True. A

pragma Inline (Empty. Null_Node, Head_Node, Tail_Node, Y
Current_Element); ﬁﬁﬁ

pragma Inline (Modify, Update); ASEh

f End_Error : exception; RN
P

A

)
)
L.

AL AN N A e i S i e N YRt el "R Rt ta S et te f B TaAn il H AN o Nl Stk ot i il Aai R i i [S Sy i Tl i hac R e St ARG Sl

private
type Node;
type Node_Access is access Node;
type Node is

record
Element : List_Element;
Next : Node_Access;

end record;
type List_Type 1is

record
Head : Node_Access:;
Tail : Node_Access;
Previous : Node_Access;
Current : Node_Access;

end record;
end Singly Linked_List;

SCHEMA.ADA specification:

with SINGLY_LINKED_LIST;
package SCHEMA is

- — o —— i ————— T ————————— ————— ———— ——— ——— ———— . ————— — — . ———

~- exports 7 basic types describing test units:

~-- Architecture_Category_Type -- benchmark category of the test
~- Description_Type - a string describing the test
~- E_and_V_Criterion_Type -- the E and V team category of

- the test. May be more than one,
~— which is the reason for the

-- the rest is there for implementation reasons

type Architecture_Category_Type is (NORMATIVE_PERFORMANCE,
NORMATIVE_CAPACITY, OPTIONAL_FEATURE,
OPTIONAL_ALGORITHM, EVERY);

DESCRIPTION_LENGTH : constant := 120; -- see User's Manual
subtype Description_Type is STRING (1 .. DESCRIPTION_LENGTH):

CRITERION_LENGTH : constant := 36;
subtype E_and_V_Criterion_Type is STRING (1 .. CRITERION_LENGTH);

B.5

.............
. . .

~- List types

~- Language_Feature_Type -- the Ada language category of the
~- test. May also be more than one.
~- Name_Type -- the short name (also file name).
-- Statistics_Type -- the priciple kind of statistics
-- measured by the test.

-- Version_Type -- the benchmark version of the

-- test.

.........................
...

.................................

.« . -—

FEATURE_LENGTH : constant := 51;
. subtype Language_Feature_Type is STRING (1

s l _

FEATURE_LENGTH) ;

NAME_LENGTH constant

: t= B,
subtype Name_Type is STRING (1

NAME_LENGTH);

type Statistics_Type is (COMPILATION, EXECUTION, BOTH);
L type Version_Type is (CONTROL,TEST, OPTIMI2E, SUPPRESS, OTHER,
X ALL_VERSIONS);

. e e e e e e e e —— —— — —— —— —— —— ———— — —————— — ———— ————————————————— — ———— o

type E_and_V_Criterion_Abbreviation_Type is (EFFCYOl, EFFCYO06,
EFFCY13, EFFCY18, EFFCY21, EFFCY22, EFFCY26,
EFFCY29, EFFCY32); .

package CRITERION_LISTS is
new SINGLY_LINKED_LIST(E_and_V_Criterion_Abbreviation_Type);
g use CRITERION_LISTS;
f type E_and_V_Criteria_List is new CRITERION_LISTS.List_Type;
function EXPAND(KEY: E_and_V_Criterion_Abbreviation_Type) return
E_and_V_Criterion_Type;

e e e e . —— — — —— ——— — ——— —————— ————————— ———— — ————— —————— —— —————— — ——

type Language_Feature_Abbreviation_Type is

(IDENTIFIERS, LITERALS, DERIVED_TYPES,
SCALAR_TYPES, ARRAY_TYPES, RECORD_TYPES,
ACCESS_TYPES, LOCAL_NAMES, NON_LOCAL_NAMES,
INDEXED_COMPS, SLICES, SELECTED_COMPS,
ATTRIBUTES, AGGREGATES, RECORD_AGGS,
ARRAY_AGGS, EXPRESSIONS, LOGICAL_OPERATORS,
RELATIONAL_OPERATORS, BINARY_ADDS, UNARY_ADDS,
MULTIPLYING_OPS, HI_PRECEDENCE_OPS, TYPE_CONVERSIONS,
QUALIFIED_EXPRESSIONS, ALLOCATORS, STATIC_EXPRS_SUBTYPES,
ASSIGNMENT, ARRAY_ASSIGN, IF_STMTS,
CASE_STMTS, LOOP_STMTS, BLOCK_STMTS,
EXIT_STMTS, RETURN_STMTS, GOTO_STMTS,

SUBPROGRAM_DECLS,
DEFAULT_PARMS,
PACKAGE_BODIES,
USE_CLAUSES,
TASK_EXECUTION,
DELAY_STMTS,
CONDITIONAL_ENTRIES,
ABORT_STMTS,
EXCEPTION_DECLS,

EXCEPTION_PROPAGATION,
USES_OF_GENERIC_INSTS,

GENERIC_INSTS,
LENGTH_CLAUSES,

SUBPROGRAM_CALLS,
OVERLOADING,
PRIVATE_TYPES,
RENAMING_DECLS,
TASK_DEPENDENCE,
SELECT_STMTS.
TIMED_ENTRIES,
CONTEXT_CLAUSES,
EXCEPTION_HANDLERS,
GENERIC_DECLS,

ENUM_REP_CLAUSES,
B.6

PARAMETER_ASSNS,
PACKAGE_SPECS_DECLS.
REFERENCES_TO_OBJECTS,
TASK_TYPES_OBJECTS,
ENTRIES_ACCEPTS,
SELECTIVE_WAITS,
TASK_ENTRY_ATTRIBS,
SUBUNITS,

RAISE_STMTS,
GENERIC_BODIES,
REPRESENTATION_CLAUSES
RECORD_REP_CLAUSES,

T T Y e s e TV W Y M - 7

ADDRESS_CLAUSES, CHANGE_OF_REP, MACHINE_CODE_INSERTS,
UNCHECKED_PGMING, SEQ_DIR_FILES, TEXT_INPUT_OUTPUT,
PRAGMA_INLINE, PRAGMA_OPTIMIZE, PRAGMA_PACK,

PRAGMA_SHARED, PRAGMA_SUPPRESS) ;

package FEATURE_LISTS is
new SINGLY_LINKED_LIST(Language_Feature_Abbreviation_Type);
use FEATURE_LISTS;
type Language_Features_List is new FEATURE_LISTS.List_Type:
function EXPAND(KEY: Language_Feature_Abbreviation_Type) return
Language_Feature_Type;

——— — — ———— ———— ————————— - —————————— ————————————————————— ———— ——

package NAME_LISTS is new SINGLY_LINKED_LIST(Name_Type):
use NAME_LISTS;
type Name_List is new NAME_LISTS.List_Type;

end SCHEMA;

with SCHEMA;
use SCHEMA;
package ATTRIBUTE_OPTIONS is

-- LIST_BY_NAME means that attributes will be listed for a

-- single instance of a test file name

-- LIST_BY_CATEGORY means that attributes will be listed for

-- all test files included in the specified attribute

type Listing Type is (LIST_BY_NAME, LIST_BY_CATEGORY);
type Attribute_Type is (SHORT, TEST_NAME, DESCRIPTION,
ARCHITECTURE, E_AND_V, LANGUAGE_FEATURE,
VERSION, STATISTICS);
subtype Category_Type 1is
Attribute_Type range ARCHITECTURE..STATISTICS;

-- These subprograms set and observe the internal state maintained by

-- the package body

procedure SET_LIST(SWITCH : in Listing Type := LIST_BY_NAME);
function LISTING return Listing Type:

procedure SET(OPTION : in Attribute_Type);
procedure RESET(OPTION : in Attribute_Type);
function IS_SET(OPTION : in Attribute_Type) return BOOLEAN;

B.?

AT i A
W el S A ST LTS P N ey

Gt Sah S EIN Se Sl A G R~ A SR E" G i B S G - MM A e M i e ek MM St chd pie - SREaten-

e
R

.........................

" procedure SET_QUERY(VALUE :

~ in Architecture_Category_Type);
procedure SET_QUERY(VALUE :

u in E_and_V_Criterion_Abbreviation_Type);

o procedure SET_QUERY(VALUE :

in Language_Feature_Abbreviation_Type);

-~ procedure SET_QUERY(VALUE :

in Statistics_Type);
procedure SET_QUERY(VALUE :
- in Version_Type);

function CATEGORY return Category_Type;

function VALUE return Architecture_Category_Type;

function VALUE return E_and_V_Criterion_Abbreviation_Type;
function VALUE return Language_Feature_Abbreviation_Type:
function VALUE return Statistics_Type;

function VALUE return Version_Type;

end ATTRIBUTE_OPTIONS;

r e m el e e e m e e 24 e e e e e
DATABASE.ADA specification:
N vith SCHEMA;
use SCHEMA;
package DATABASE_INTERFACE is
-- Each of the following functions will take as input a test name.
-- and return as output either a single object or a list of objects
| & -- as determined by the specific function called.

function GET_DESCRIPTION(INPUT_NAME : Name_Type)
return Description_Type;
function GET_ARCH_CATEGORY(INPUT_NAME : Name_Type)
. return Architecture_Category_Type;
i function GET_E_AND_V_CATEGORIES(INPUT_NAME : Name_Type)
return E_and_V_Criteria_List;
function GET_FEATURES(INPUT_NAME : Name_Type)
return Language_Features_List;
function GET_STATISTICS(INPUT_NAME : Name_Type)
oo return Statistics_Type;
) ¢ function GET_VERSION(INPUT_NAME : Name_Type)
. return Version_Type:

function NAMES(ATTRIBUTE: Architecture_Category_Type)
. return Name_List;
e function NAMES(ATTRIBUTE: E_and_V_Criterion_Abbreviation_Type)
b I© return Name_List;

B.8

Ll s

e vr————— - A e A e e

function NAMES(ATTRIBUTE: Statistics_Type)
return Name_List;

function NAMES(ATTRIBUTE: Version_Type)
return Name_List;

function NAMES(ATTRIBUTE: Language_Feature_Abbreviation_Type)
return Name_List;

NOT_FOUND, -- raised when unit not in database
CONSISTENCY_ERROR: exception; -- raised when database file
-- is corrupted

end DATABASE_INTERFACE;

package CPU_TIME is

function CPU_CLOCK return duration;

end CPU_TIME;

package INQUIRY_OPERATIONS is

type Command_Type is (COLLECT_COMMAND, SELECT_COMMAND,
PRINT_COMMAND, HELP_COMMAND,
SAVE_COMMAND, LIST_COMMAND,
QUIT_COMMAND);

ANSWER prompts the user for a Yes-No response, converting the
result to type BOOLEAN
REQUEST prompts with a menu of choices, converting the
result to type Command_Type
INITIALIZE prints greeting and initial help info.
COLLECT could be called more than once, to change file name setup
-- builds Current Files Record and opens Statistics files.
SELECT could be called repeatedly. to change selections
-- builds Current Options Record
LIST could be called out-of-sequence, and repeatedly
-- uses built records
PRINT dumps the current contents of the statistics files
SAVE prints (a less formatted) version of the Report dialog to
a named file
HELP re-displays the initial prompt.
QUIT closes any open files and exits.

B.9

..................

.« TS

e
'.}‘I:!.
P N
D WP NI

b ORI

o]
2

. . ’
atatecd

................

NS S A i e S At e N = Pl A iy Sl S i, Wl ML & B S A% e Yol Vi, S M e, el ond o N Tha Sl et s ot i Sy
A

function REQUEST return Command_Type;

. procedure INITIALIZE;

l procedure COLLECT_FILES;

D procedure SELECT_ATTRIBUTES:
procedure LIST_STATISTICS;

L procedure PRINT_FILES;

o procedure HELP_PROMPT;

procedure SAVE_STATISTICS;

procedure QUIT;

« .
B end INQUIRY_OPERATIONS; .
R, 1
INSTRUMENT.ADA specification: i }
A package Instrument is e
r -- The Instrument routines. .
procedure START -- THIS ROUTINE MUST BE INVOKED AT THE :{i1
~-- START OF A TEST, BEFORE ANY OF THE A

-- OTHER REPORT ROUTINES ARE INVOKED. o

-— IT SAVES THE TEST NAME AND OUTPUTS

. -- THE NAME AND DESCRIPTION. e

| (NAME : STRING; -- TEST NAME, E.G., "C23001A-AB". [
» DESCR : STRING -- BRIEF DESCRIPTION OF TEST. E.G., S
-- "UPPER/LOWER CASE EQUIVALENCE IN " O
) -- & "IDENTIFIERS". g
procedure COMMENT -- QUTPUT A COMMENT MESSAGE. T
K g DESCR : STRING -- THE MESSAGE. L

. procedure STOP; -- THIS ROUTINE MUST BE INVOKED AT THE

-- END OF A TEST. 1IT OUTPUTS A MESSAGE RO
-- INDICATING WHETHER THE TEST AS A s
-- WHOLE HAS PASSED OR FAILED, OR IS R
-- NOT-APPLICABLE. E
- -- THE DYNAMIC VALUE ROUTINES. 3
-- EVEN WITH STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE ‘
-~ DYNAMIC RESULTS. .
function IDENT_INT -- AN IDENTITY FUNCTION FOR TYPE o
" -- INTEGER. S
- (X : INTEGER -- THE ARGUMENT. "
) return INTEGER; -- X. s 1
function IDENT_CHAR -- AN IDENTITY FUNCTION FOR TYPE =
-- CHARACTER. XS
(X : CHARACTER -- THE ARGUMENT. “e

.) return CHARACTER; -- X. o
I P
N
B.10 RS
o
s
BACA
L ‘. =Y

- - - . -~ - DR .
. PR ST EGARLEN
I T M ALY - Yy S, AL P I R

............
'''''''''''''''''''''''

A Nt 20/ 5 e Nl A At Sae b AR T M Vs S M i e oA P i A At i A A A A i o caice - A A n A b e 2

i
function IDENT_BOOL -- AN IDENTITY FUNCTION FOR TYPE y
-- BOOLEAN. i
N (X : BOOLEAN -~ THE ARGUMENT. s
§ L) return BOOLEAN; -- X. o
N function IDENT_STR -- AN IDENTITY FUNCTION FOR TYPE BN
-- STRING.]
S (X : STRING -- THE ARGUMENT. i
e) return STRING; -- X. RO
% function EQUAL -- A RECURSIVE EQUALITY FUNCTION FOR N
. -- TYPE INTEGER. o
S (X, Y : INTEGER -- THE ARGUMENTS. e
’) return BOOLEAN; -- X =Y.
generic S
o type GEN_TYPE is (<>); o
K package PROCS is ‘

type t is new gen_type;
type ref_t is access t;
' global: t;
. global_object: t;

4

1

“‘J

INIT: constant T := T'FIRST; i:Q?

; : GLOBAL_ACCESS: REF_T :=- new T;
E function IDENT(X: in T) return T;
' procedure LET(X: in out T: ¥Y: T);
end PROCS;
: generic fﬂ;
. | type gen_type is (<>); []

arr_size: integer;
package arr_procs is

subtype index is integer range 1l..arr_size;

type t is array(integer range <>) of gen_type;)
- init: t(index) :=- (others => gen_type'first); N
i o global: t(index); P
5 function ident(x: t) return t;]

f} procedure let(x: in out t; y: t); L
< end arr_procs; SO
- end Instrument; ;Q?
REPORT_WRITER.ADA: -
SO _1
] with INQUIRY_OPERATIONS; use INQUIRY_OPERATIONS; £
: -- This subprogram acts as the ’‘main’ routine of the portion DR
~- of the Benchmark system that deals with information B
-- retrieval and user interaction.
procedure REPORT_WRITER is .
o . begin i
g ! INITIALIZE: -- display greeting and helpful prompt r
S B.11 |
E,’ i

..........

loop
case REQUEST is

l when COLLECT_COMMAND =: COLLECT_FILES;
T -- set up statistics files

ot when SELECT_COMMAND => CELECT_ATTRIBUTES;
N -- customize display

n when LIST_COMMAND => LIST_STATISTICS;
N -- display statistics and database attributes

when SAVE_COMMAND => SAVE_STATISTICS;
-- display statistics and database attributes
-- (to named file)

when PRINT_COMMAND => PRINT_FILES;
-- dump contents of statistics files to screen

when HELP_COMMAND => HELP_PROMPT;

}f -- display helpful prompt

when QUIT_COMMAND => QUIT,; exit;
-- close files
end case;
~ end loop;
R end REPORT_WRITER;
2
L
]
R
i
T
-,‘.-___.1
I L
- B.12 .
i@ ' vy
= o
R O D G OSSR Q;afg;ﬁgp;&fL;v~- ---------------- R IENIN

e

Ty—

APPENDIX C: Report Writer’'s Guide

I. INTRODUCTION

The report writer is used by the Prototype ACEC system to
report statistics generated by the host/target system and data
supplied with the ACEC. The user carries on an interactive
dialog with the report writer via a menu. From this menu, the
user can 1) indicate which files are to be used as statistics
files, 2) specify both the test attributes to be displayed and
the type of database query, and 3) choose to list information
either to the terminal or to a file. The remainder of this
guide contains specific information on the menu (Section II) and
the menu options (Section III). Section IV is an example run of
the report writer.

II. MENU

There are seven options present in the report writer'’'s menu.
The first option., "C", collects the names of the files to be used
as statistics files. The second optiomn, "S", provides for
setting the test attributes to be displayed and for changing the
database query parameter. Choosing the list option, "L", queries
the database using the attributes and parameter set by the second
option and lists the desired information to the terminal. Option
"P" displays all of the contents of all of the collected
statistics files. Not only can the database information be
displayed on the terminal, but it can also be put into a data
file. This file is specified by using the fifth option, "F".
This option acts exactly like the list option except the output
is sent to the given file instead of to the screen. 1If, at any
time when the menu is displayed, you need some help, enter "H" to
view the short help prompt. Finally, to leave the report writer,
select the option "Q", for "quit". When quitting, all opened
statistics files are closed and control is returned to the host
system.

When the report writer is first executed, and after
completing an option (except the QUIT optiomn), the menu is
displayed. Only the responses given in the menu are valid.
Entering an invalid response will simply cause a reprompt. The
responses can be given either in upper- or lower-case characters.
The menu is as shown on the following page:

AT CPAR

AN

b IR
Pl s el e Rlatalt Al

Bl ¥

.
PO

PRI A AL A il N

- e e e e m = = e e = e = =

Valid choices are:
Collect names of statistics files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

Re-display help prompt.

Quit processing.

Ot mO

Please enter your choice:

- III. OPTIONS

t will result in a confirmation statement, such as "COLLECT command
accepted"” for the "C" response. Any values set in an option can

be changed and rechanged as many times as necessary while running
the report writer.

i: - Vhenever the menu is displayed, entering a valid response

E . ITI.a. COLLECT, "C"

The COLLECT option collects the names of the files to be used

AN as the statistics files. These statistics files are the

S compilation file, the run time file, and the instrumentation

; file. At the beginning of a session with the report writer,

'y there are no file names associated with the files; they are "not
defined." When this command is invoked, the current status of
the statistics files is given. The user can then decide either
not to change the status of these files, or to selectively change T
the status of individual files. After completion of this 2T
command, the new file status is given. Below is an example of T
using this option, where the user wants to change the compilation v

- file to ’‘c.data’, the run time file to ‘r.data’, and wants to =
leave the instrumentation file unchanged:

PP
o .

Please enter your choice: ¢ N
COLLECT command accepted. ~

LY S S

COMPILATION file is not defined.
RUN_TIME file is not defined.
INSTRUMENTATION file is not defined.
-- the current files' status

c.2

P

N L B R
. -.'."’ AL
'a'a a T R B N SN

P N N P AL Uy D T iy T S S R R AR P |

CHM SIS SESCILI SV SR NIt N TR IS TP SRR S U R SIS S WY YT S © Y

Al N e h Sl M N TR A B St e S B oA A e S it S S g v e M B e 2 s 20y g
o T T T TR TR R I AR - A

b AR ISR A Mt -Sd T A R Aan

Do you wish to change file(s)? (yi/nl: y
COMPILATION file is not defined. &
Do you wish to change? [(yinl: y
n File name?: c.data
- c.data ... open.
-- compilation file is now c.data
RUN_TIME file is not defined. &
v Do you wish to change? [yin): y
" File name?: r.data
r.data ... open.
: -- run time file is now r.data
N INSTRUMENTATION file is not defined. &
X Do you wish to change? [yin]l: n
COMPILATION file is c.data

. RUN_TIME file is r.data -- the new status
. INSTRUMENTATION file is not defined

The file names given must have six characters. The file
... must also exist in order to be used by the report writer.
t; t However, entering a nonexistant file will not cause a problem:

COMPILATION file is not defined. &
Do you wish to change? [yiml: y

File name?: nofile
nofile ***x File not found

The files collected can be changed or closed by the COLLECT
command. Whenever a yes response ("y") is received to the
prompt "Do you wish to change? [yinl", the currently opened
statistics file is closed and the user is asked for a file name.
To keep that statistics file closed ("not defined"), simply enter
a carriage return as the file name. Entering a six character
file name will open that file. The file opened will be used as
the statistics file. For example, given the three files are
currently defined as ‘c.data’, ‘r.data’, and ‘i.data’
respectively, and we want to change the compilation file to
‘cl.dat’, leave the run time file as is, and close the
instrumentation file, the example discourse with the report
writer follows:

Please enter your choice: ¢

COLLECT command accepted.
COMPILATION file is c.data
RUN_TIME file is r.data

.....

A S AN S A AN

yowmy L

-

INSTRUMENTATION file is i.data
Do you wish to change file(s)? {yinl: y

COMPILATION file is c.data &

Do you wish to change? [(yinl: y
c.data ... closed.File name?:cl.dat
cl.dat ... opened
RUN_TIME file is r.data &

Do you wish to change? [yi/n}: n
INSTRUMENTATION file is i.data &

Do you wish to change? [yinl: y
i.data ... closed.File name?:

-- enter a carriage return
COMPILATION file is cl.dat
RUN_TIME file is r.data
INSTRUMENTATION file is not defined

III.b. SELECT, "S"

The SELECT prompt is used to change the database query and
to specify which attributes of the tests are to be displayed.
There are two basic database queries. The first is LIST_BY_NAME,
and the other is LIST_BY_CATEGORY. The LIST_BY_NAME query is
used to gain information about single specific tests. The
LIST_BY_CATEGORY query finds all tests that satisfy the category
parameter specified. The possible values for the category query
are Architecture, E and V Criteria, Language Feature, Version,
and Statistic. Under each of these categories are the specific
values: Normative performance, Normative capacity, Optional
feature, and Optional algorithm are Architecture values. Below
is an example of using the SELECT option to change only the
database query, with the default list setting and category
setting marked:

SELECT command accepted.
Do you wish to change query? [y!'nl: y
Listing setting: LIST_BY_ NAME -
Do you wish to change? [yin): y
Listing setting: LIST_BY_CATEGORY
Category is: ARCHITECTURE Current Value is EVERY
-- default for category

Do you wish to change both Category and Value? [yin]: y
The choice is one of the following:

ARCHITECTURE

E_AND_V

LANGUAGE_FEATURE

VERSION

STATISTICS

default list setting

Select the new category as it comes by...

ARCHITECTURE [yi/nl: n

E_AND_V [yin]: y -- select the E_AND_V category
Now, select a value as it comes by ...

EFFCYOl [yin]l: n

EFFCY06 [yIn]: y -- select the EFFCY06 value
Category is: E_AND_V Current Value is EFFCYO06

Do you wish to change display? [yinl: n

After specifying the desired query, the user can change the
display. If the user requires changes to be made, the first
display prompt concerns whether the information for display must
be in its long or short form. 'EFFCYOl’' is the short form of
efficiency criteria 01, whereas "Speed of object code gemeration”
is the long form. With the short form, short language feature
names and only one header for the various statistics file data
are printed. The other questions concern which attributes are to
be printed. For all of the attributes, the current setting of
the option is given and the user is asked whether to change the
current setting or to leave this value unchanged. After all the

attributes have been set, the new values of the options are shown.

Below is an example, with the default display options marked:

SELECT command accepted.

Do you wish to change query? [yin]l: n
Do you wish to change display? [y!nl: y
Display options are:

Attribute: SHORT Current value is: FALSE
-- default
Do you wish to change? [yin]l: n
Attribute: TEST_NAME
Current value is: TRUE
-- default
Do you wish to change? [y!/n]: n
Attribute: DESCRIPTION
Current value is: TRUE
-- default
Do you wish to change? [yin]l: n
Attribute: ARCHITECTURE
Current value is: TRUE

-- default
Do you wish to change? [yin]: y
... changed.
Attribute: E_AND_V Current value is: TRUE
-- default

—— T M g v v ‘o d - - e
L R N s e N R S T - Y s T W W v, v v w w =

r "‘. /".‘_
'y '.A:‘ |

?:-t?:-:i
Do you wish to change? [yinl: y :335
... changed. Y
Attribute: LANGUAGE_FEATURE Current value is: TRUE gflg
-- default
Do you wish to change? [y/anl: y
changed.
Attribute: VERSION Current value is: TRUE
-- default

Do you wish to change? [yin}: n
Attribute: STATISTICS

Current value is: TRUE
-- default
Do you wish to change? (y/nl: n
Display options are:

L
SO AT
PRI S T DA

Attribute: SHORT Current value is: FALSE
Attribute: TEST_NAME Current value is: TRUE B
Attribute: DESCRIPTION Current value is: TRUE T
Attribute: ARCHITECTURE Current value is: FALSE S
Attribute: E_AND_V Current value is: FALSE RN
Attribute: LANGUAGE_FEATURE Current value is: FALSE pRte
Attribute: VERSION Current value is: TRUE "
Attribute: STATISTICS Current value is: TRUE T
IITI.c. LIST, "L" L.

The LIST option is used to query the database. If the query S
is LIST_BY_NAME, then a 'test unit name’ will be asked for. After L
the test name is received, information about that test is N
displayed according to the display settings made by the user (or NS
the defaults). For the LIST_BY_CATEGORY query, all entries in t;)
the database that satisfy the query will be displayed according :
to the display settings.

Below are examples of both LIST_BY_ NAME and LIST_BY_CATEGORY if}?
sessions: ’z&
b

LIST_BY_NAME with display options DESCRIPTION, and —
STATISTICS and only the compilatiorn statistics file opened. o
Please enter your choice: 1 "

LIST command accepted. AR

What is the test unit name? piala2 e
Description: PI Algorithm (test) T
Statistics: BOTE N
COMPILATION RSRY

L

C.86 .

......................

Name Elapsed/CPU Code/Data Comments
PIALA2 14.29 2.10 1536

Do you want to list another unit? (yinl: y
¥hat is the test unit name? tpitc2

Description: Task Performance w/10 Idle Tasks (test)
COMPILATION

Name Elapsed/CPU Code/Data Comments

TPITC2 18.79 4.56 11776

Do you want to list another unit? (yinl): y

What is the test unit name? notest

Description:

*** Sorry, NOTEST does not have a database entry
Do you want to list another unit? [(yinl: n

LIST_BY_CATEGORY with category E_AND_V value EFFCY26 and

display options SHORT, TEST_NAME, E_AND_V, and LANGUAGE_FEATURE:

Please enter your choice: 1
LIST command accepted.

Test Name : ADDSAl

E and V Criteria: EFFCY21 EFFCY22 EFFCYOl EFFCY26
Language Feature(s): BINARY_ADDS

Test Name: ADDSA2
E and V Criteria: EFFCY21 EFFCY22 EFFCYOQ1l EFFCY26
Language Feature(s): BINARY_ADDS

III.4. PRINT, “P"

The PRINT option dumps all of the collected statistics

files to the screen. If there are no statistics files collected
then nothing will be printed to the screen.

III.e. SAVE or FILE, "F"

The "F" option is exactly like the LIST option except that

the information extracted from the database is put into a file
specified by the user. The file name asked for must be six (6)

c.7

B e T T T T L e, PRI A AR e st oo 2 2 paan aun

Y

characters long. At the completion of this command, the
specified file will be closed. The following example is just
like the LIST example above, where the category was LIST_BY_NAME:

3|

4 n

’E
H
E

Please enter your choice: f
SAVE command accepted.
File name?: listed
listed ... open.
¥hat is the test unit name? piala2
Do you want to list another unit? [(y!mn): y
WVhat is the test unit name? tpitc2
Do you want to list another unit? [yin]: n
listed ... Closed.

PR U —

Description: PI Algorithm (test)

Statistics: BOTH
COMPILATION

Name Elapsed/CPU Code/Data Comments

PIALA2 14.29 2.10 1536

Description: Task Performance w/10 Idle Tasks (test)
Statistics: BOTH

COMPILATION

Name Elapsed/CPU Code/Data Comments

TPITC2 18.79 4.56 11776

III.f. HELP, "H"

The HELP option re-displays the report writer header.
IIT.g. QUIT, "Q"

To quit from the report writer, enter the QUIT response to
the menu prompt. When quitting, all opened files are closed.

c.8

..................................

r: TR ATAET S LT TR TR LRRARRLNLE U ARG ACS AT A e T A At A A A Sl e i i 2 i Sl it A Sl A D SR et a e Nl 2) —a b gk) o)

IV. EXAMPLE

Below is an example of running the report writer from
beginning to end:

Initializing Inquiry_Operations.

There are 3 parameters you can set/change:

} 1. COLLECT the names of files which contain Statistics
N Then SELECT the Attributes you wish to display.
i 2. The Query parameter tells the Report Writer how to search the
Database and Statistics files.
You can query by Name or by Category.
3. The Display parameter tells what test unit Attributes to display.
The LIST command produces the Report you’'ve defined.

r Use the PRINT command t0 see what's in the selected &
Statistics files.
- SAVE is Just like List, but lets you put the report in a &
.o named file for
) later processing in the Host environment.

i You can change Statistics files and Attributes as often as &
‘ you wish.

See the User's Manual for details.

Ready to continue? [(yin): y
a8 Valid choices are:
Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.
Print contents of current files to screen.
Save output to named file.
Re-display help prompt.
Quit processing.

ORI nh

Please enter your choice: 1
. LIST command accepted.
. Vhat is the test unit name? akeral2

- Test Name: AKERA2 B
Description: Ackermann function (test) T
e Version: TEST
AR Architecture Category: OPTIONAL_ALGORITHM
.. E and V Criteria: Object code size
N Execution time o
I Speed of object code generation r o1

c.9

O abiadnivi-a ot tut Wt Aning B Cude sas i by Ahn - Aint-n t Sl L Aarl e

= Language Feature(s): Subprogram Calls
Scalar Types, Declarations, and Object &
Declarations
p Statistics: BOTH
Do you want to list another unit? [(yinl: y
‘. Vhat is the test unit name? sieval
- Test Name: SIEVAl
- Description: Sieve of Eratosthenes (control)
Version: CONTROL
- Architecture Category: OPTIONAL_ALGORITHM
' E and V Criteria: Object code size

Execution time
Speed of object code generation
Execution time, arith. & logic opers
Language Feature(s): Loop Statements
Relational Operators and Membership Tests
Binary Adding Operators
Statistics: BOTH

<,,‘

Do you want to list another unit? [(yin): y
| Vhat is the test unit name? notest
Test Name: NOTEST
Description:
*** Sorry, NOTEST does not have a Database entry.

Do you want to list another unit? [yimnl: n
) . Valid choices are:
- Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.
Print contents of current files to screen.
Save output to named file.
Re-display help prompt.
Quit processing.

oMY H®nQ

Please enter your choice: J
. please try again.

i HELP command accepted.
Co There are 3 parameters you can set/change:

1. COLLECT the names of files which contain Statistics
Then SELECT the Attributes you wish to display.
. 2. The Query parameter tells the Report Writer how to search the
) Database and Statistics files.
' You can query by Name or by Category.
3. The Display parameter tells what test unit Attributes to display.
The LIST command produces the Report you’'ve defined.

SR Use the PRINT command to see what’'s in the selected &
) Statistics files.

C.10

SAVE is just like List, but lets you put the report in a & ?ﬁﬂ
named file for e

later processing in the Host environment.

You can change Statistics files and Attributes as often as &
you wish.

See the User'’'s Manual for details.

| Ready to continue? [yin]: y

. Valid choices are:

Lol Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.
Print contents of current files to screen.
Save output to named file.
Re-display help prompt.

Quit processing.

Please enter your choice: c

COLLECT command accepted.

Oyt nO

N COMPILATION file is not defined.
! RUN_TIME file is not defined.
- INSTRUMENTATION file is not defined.
Do you wish to change file(s)? (y!nl: ¥y
COMPILATION file is not defined. Do you wish to change? [yinl: y
_ File name?: nofile
I . nofile *** Pile not found.

- RUN_TIME file is not defined. Do you wish to change? [yin]l: n
s INSTRUMENTATION file is not defined. &

v Do you wish to change? (yin]l: n
. COMPILATION file is not defined. U
| " RUN_TIME file is not defined. t ‘
R INSTRUMENTATION file is not defined. Ot
valid choices are: N
C Collect names of statistics files. e
) S Select attributes for reporting. i
i L List selected attributes from files. L]
iae P Print contents of current files to screen. BAR
F Save output to named file. :
H Re-display help prompt. Lo
Q Quit processing. R
|- Please enter your choice: ¢ .
COLLECT command accepted. RChoes

COMPILATION file is not defined.)
RUN_TIME file is not defined. 1
-y INSTRUMENTATION file is not defined.]
i Do you wish to change file(s)? [(yinl: y ;:"4

C.11

MO N ATC A TSI 4 040 S A ATl S it i A AV LN UL AL aPu L e St it a e A AR A A A i A i e R e ot et et ol

COMPILATION file is not defined. Do you wish to change? [y!nl: y
File name?: c.data

c.data ... open.
u RUN_TIME file is not defined. Do you wish to change? [yinl: y
- File name?: r.data

Tr.data ... open.

o INSTRUMENTATION file is not defined. &
Do you wish to change? [yin]: y
File name?: i.data
‘ i.data ... open,.
- COMPILATION file is c.data
P RUN_TIME file is r.data
INSTRUMENTATION file is i.data

Valid choices are:

Collect names of statisti- s files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

Re-display help prompt.

Quit processing.

OEgotnQ

Please enter your choice: 1
LIST command accepted.
¥Vhat is the test unit name? pialal
Test Name: PIALA2
| B Description: PI Algorithm (test)
Tt Version: TEST
Architecture Category: OPTIONAL_ALGORITHM
E and V Criteria: Speed of object code generation
Object code size
_ Execution time
I m Execution time, arith. & logic opers
o Language Feature(s): Binary Adding Operators
Multiplying Operators
Highest Precedence Operators
Statistics: BOTH
i COMPILATION
) Name Elapsed/CPU Code/Data Comments
= PIALA2 14.29 2.10 1536

RUN_TIME
Name Event Elapsed/CPU Code/Data Comments
PIALA2 11.20 0.18 512 512

INSTRUMENTATION

Name Event Elapsed/CPU Comments
PIALA2 STOP_REC 0.00 0.00

) ff Do you want to list another unit? [yinl): y ih R

c.12 o

..-'". "..v'."'.,‘ N 'A:’_r‘.r". LN ‘.r‘.r .T'. OO '-‘v‘.’v'. MM A A A A A C AR A A A A A A hudl bl Sl gl Sl o P e a AR~ g S e I

e

g
; What is the test unit name? tpitc2
Test Name: TPITC2
N Description: Task Performance w/10 Idle Tasks (test)
5 n Version: TEST
ot Architecture Category: NORMATIVE_PERFORMANCE
- E and V Criteria: Speed of object code generation
L Idle task effect on performance
;o Object code size
o Execution time
I - Language Feature(s): Task Types and Task Objects
Lo Task Execution - Task Activation
- Statistics: BOTH
- COMPILATION
Co Name Elapsed/CPU Code/Data Comments
I : TPITC2 18.79 4.56 11776
: RUN_TIME
Name Event Elapsed/CPU Code/Data Comments
TPITC2 11.77 1.30 512 512
INSTRUMENTATION
Name Event Elapsed/CPU Comments

TPITC2 STOP_REC 1.36 1.36

Do you want to list another unit? (y/n]: n
Valid choices are:
Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.
Print contents of current files to screen.
Save output to named file.
Re-display help prompt.
Quit processing.

Oy na

Please enter your choice: s
SELECT command accepted.
Do you wish to change query? [yi!nl: y
Listing setting: LIST_BY_NAME
Do you wish to change? [y!nl: y
Listing setting: LIST_BY_CATEGORY
Category is: ARCHITECTURE Current Value is EVERY
Do you wish to change both Category and Value? (yin]l: y
The choice is one of the following:
ARCHITECTURE
E_AND_V
LANGUAGE_FEATURE
VERSION AERER
STATISTICS T
Select the new category as it comes by...]

ARCHITECTURE (yin]: n 5?&
E_AND_V (yinl: y r
1

C.13

(AL
» o’y

)

-

Now,
EFFCYO1
EFFCYO6
EFFCY13
EFFCY18
EFFCY21
EFFCY22
EFFCY26

(yinl:
(yin]:
(ytmnl:
(yin]:
[yinl:
(yin]:
[yinl
Category is:

<dBpppbB

select a value as it comes by

E_AND_V Current Value is EFFCY286

Do you wish to change display? [y!nl: y
Display options are:

Attribute:

Attribute:

Attribute:

Attribute:

Attribute:
Attribute:

Attribute:

Attribute:

Display options are:

Attribute:
Attribute:

Attribute:

Attribute:

Attribute:
Attribute:
Attribute:
Attribute:

SHORT Current value is: FALSE
Do you wish to change? [yinl: y
... changed.
TEST_NAME Current value is: TRUE
Do you wish to change? [yinl: y
. changed.
DESCRIPTION Current value is: TRUE
Do you wish to change? [y/nl: y
... changed.
ARCHEITECTURE Current value is: TRUE
Do you wish to change? [(y/nl: n
E_AND_V
Current value is: TRUE
Do you wish to change? [y/nl: n
LANGUAGE_FEATURE
_ Current value is: TRUE
Do you wish to change? [y/nl: n
VERSION
Current value is: TRUE
Do you wish to change? [yinl: y
. changed.
STATISTICS Current value is: TRUE
Do you wish to change? [yinl: n
SHORT Current value is: TRUE
TEST_NAME Current value is: FALSE
DESCRIPTION Current value is: FALSE
ARCHITECTURE Current value is: TRUE
E_AND_V Current value is: TRUE
LANGUAGE_FEATURE Current value is: TRUE
VERSION Current value is: FALSE
STATISTICS Current value is: TRUE

Vvalid choices are:

ol Rl Nel

r" r .
ST

)

"
PR

At t
.

o ey

A

‘l : i3
£y

sy

Collect names of statistics files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

C.1l4

....................

.............

Cwe

N A S

Y -t . . LA PR L D
(I YU S ST PR SOUT Ual T S G W I U

R N T R T T o Ty

.......................

H Re-display help prompt.
Q Quit processing.

Please enter your choice: 1
LIST command accepted.

Architecture Category: NORMATIVE_PERFORMANCE

E and V Criteria: EFFCY21 EFFCY22 EFFCYOl EFFCY26
Language Feature(s): BINARY_ADDS

Name Event Elapsed/CPU Code/Data Comments
ADDSAl 13.74 2.30 1536

ADDSAl 13.23 0.30 512 512
ADDSAl STOP_REC 0.16 0.16

Architecture Category: NORMATIVE_PERFORMANCE

E and V Criteria: EFFCY21 EFFCY22 EFFCYOl EFFCY26
Language Feature(s): BINARY_ADDS

Name Event Elapsed/CPU Code/Data Comments
ADDSA2 28.50 1.95 1536

ADDSA2 11.71 0.28 512 512

ADDSA2 STOP_REC 0.23 0.23

Architecture Category: NORMATIVE_PERFORMANCE
E and V Criteria: EFFCY21 EFFCY22 EFFCYOl EFFCYO6 EFFCY29 &
EFFCY26
Language Feature(s): BINARY_ADDS PRAGMA_SUPPRESS
Name Event Elapsed/CPU Code/Data Comments
ADDSA3 28.99 2.10 1536

ADDSA3 11.89 0.30 512 512
ADDSA3 STOP_REC 0.11 0.11

Architecture Category: NORMATIVE_PERFORMANCE

E and V Criteria: EFFCY21 EFFCY22 EFFCYOl EFFCY26
Language Feature(s): MULTIPLYING_OPS

Name Event Elapsed/CPU Code/Data Comments
MULTA1 156.00 1.85 1536

MULTAL 11.20 0.28 512 512
MULTAl STOP_REC 0.08 0.08

C.15

R o NN
. el e

e
t e

(B 204

-- many database responses have been deleted from this example.

- There were a lot of them.

Valid choices are:

Collect names of statistics files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

Re-display help prompt.

Quit processing.

Oy mO

Please enter your choice: ¢
COLLECT command accepted.

COMPILATION file is c¢.data

RUN_TIME file is r.data

INSTRUMENTATION file is i.data

Do you wish to change file(s)? [yinl: y
COMPILATION file is c.data &

Do you wish to change? (yinl: y

c.data ... closed.File name?:
RUN_TIME file is r.data ®
Do you wish to change? [yinl: y
r.data ... closed.File name?:
INSTRUMENTATION file is i.data &

Do you wish to change? [yinl: n

COMPILATION file is not defined.
RUN_TIME file is not defined.
INSTRUgENTATION file is i.data

Valid choices are:

Collect names of statistics files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

Re-display help prompt.

Quit processing.

OM"EOrnh

Please enter your choice: s

SELECT command accepted.

Do you wish to change query? (yin]: y

Listing setting: LIST_BY_CATEGORY

Do you wish to change? [(yinl: y

Listing setting: LIST_BY NAME

Do you wish to change display? [(yinl: y
Display options are:

Attribute: SHORT Current value is: TRUE
Do you wish to change? [yinl: n

C.

16

................................
.......

':q- - ':;‘. ’-._ IBIC et P .'\ -, - - a. .‘4 v -"_ ,‘. :‘_ A et i i i i DA N Sk A A B S A At

e mach e itieca i sl b sk osel b el Nl UL Ot L]
SRS

Attribute: TEST_NAME

Current value is: FALSE

Do you wish to change? [yin]l: n
Attribute: DESCRIPTION

Current value is: FALSE

Do you wish to change? [y!n): n
Attribute: ARCHITECTURE

Current value is: TRUE

Do you wish to change? [yin]: y

. . changed.
Attribute: E_AND_V Current value is: TRUE

Do you wish to change? [yinl: y

. changed.

Attribute: LANGUAGE_FEATURE Current value is: TRUE

Do you wish to change? [yin): y

... changed.

Attribute: VERSION Current value 1s: FALSE

Do you wish to change? (yin]l: n
Attribute: STATISTICS

Current value is: TRUE

Display options are:

Do you wish to change? [yin]l: n

Attribute: SHORT Current value is: TRUE

Attribute: TEST_NAME Current value is: FALSE
Attribute: DESCRIPTION Current value is: FALSE
Attribute: ARCHITECTURE Current value 1s: FALSE
Attribute: E_AND_V Current value is: FALSE
Attribute: LANGUAGE_FEATURE Current value is: FALSE
Attribute: VERSION Current value is: FALSE
Attribute: STATISTICS Current value is: TRUE

Valid choices are:

Collect names of statistics files.

Select attributes for reporting.

List selected attributes from files.

Print contents of current files to screen.
Save output to named file.

Re~-display help prompt.

Quit processing.

Oa"agttna

Please enter your choice: 1
LIST command accepted.
¥hat is the test unit name? addsal

Name Event Elapsed/CPU Code/Data Comments
ADDSA1 STOP_REC 0.16 0.16

Do you want to list another unit? (yin): y
What is the test unit name? addsaZ2 BT
Name Event Elapsed/CPU Code/Data Comments S
ADDSA2 STOP_REC 0.23 0.23

C.17

.....................

.........................
.....................
...................

Do you want to list another unit? [(yin]l: n
valid choices are:

Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.

Save output to named file.
Re-display help prompt.
Quit processing.

Oag"aotnh

Please enter your choice: f

SAVE command accepted.

File name?: listed

listed ... open.
What is the test unit name? addsal

Do you want to list another unit? [yinl: y
What is the test unit name? addsa2

Do you want to list another unit? [(yinl: n
listed closed.

Valid choices are:
Collect names of statistics files.
Select attributes for reporting.
List selected attributes from files.

Save output to named file.
Re-display help prompt.
Quit processing.

Please enter your choice: ¢
QUIT command accepted.

OmEgtnQ

i.data closed.
~—- Below is the file ‘listed’.

Elapsed/CPU Code/Data Comments
0.16 0.16

Name Event
ADDSA1 STOP_REC

Name Event Elapsed/CPU Code/Data Comments

0.23 0.23

ADDSA2 STOP_REC

.18

...................................
.....

Print contents of current files to screen.

Print contents of current files to screen.

.......

B o
_a

et e e
amlalale sl a

....................
.......................

e S e give a2 aon e

IR . .

P - e
. R L

—— ————— —
AR R A .
AN A .

v _‘-_-—‘m'. TR
ot S

APPENDIX D : EXECUTION EXAMPLES

DATA GENERAL MV 10000:

Below is the test harness. Examples of the input and
output files will follow. 1In the following command procedures,
® is a line continuation character,
%n% is a symbol for the n-th parameter passed to the
command,
[file] is an expansion symbol., so that this symbol is expanded
to the contents of the named file, and
‘udd:f.n is a sample pathname for a file.

Note that naming a file as a command requests that the file
name requested, plus a ".cli" on the end, is used as further
input to the command line interpreter at that point in the
command file.

The following is ":udd:benchmarks:harness_many.cli", the
main command file. This command file creates the compilation
statistics and run-time statistics files, in that order, and
batches a job to generate the statisties. The batch command runs
onto a second line, as indicated by the "&".

- e e e ar e e e e e e wm e o am ae me mm wm wm e em mr e e ae e e e = wm -

create harness.out

create instr.dat
gbatch/qpri=101/qoutput=%1%.log/notify &
:ndd:benchmarks:harness_a %1%

e e T T e

The following is :udd:benchmarks:harness_a.cli, called from
the file above. This file is useful only to insure that only
one Ada compilation or execution is being created by this set of
command files at a time.

- e e e e wr e e e e e e e em e em oar e e e e e e e owe e e o =

- e e e e e e e e e e e e e em e ot e em e e e e em e em e am em — e w

The following is :udd:benchmarks:harness.cli, which
contains all the commands for a single test job. Harness first
records the name of the test on the temporary statistics file
(%1%.stat). Next it records the current (elapsed) time and the
amount of CPU time used so far by this process. After compiling
and linking the test file, the current time and amount of CPU
time used are recorded again; the execution time statistics will

D.1

.......
................

AR e L ST S ACR I D AP Sl S S e A e e e AR e e At s A MAn RN Sl b e e e R W T T T T O N

be derived from this information. After a fifteen second pause,
the size of the produced load image is recorded on the temporary
statistics file (by a little program called "HFORMAT", designed
for that purpose). The collected statistics are then appended

to the enduring statistics file, and the temporary compilation
statistics file is deleted. Lastly, the test program is run, the
statistics produced by the instrumentation package are appended
to the enduring instrumentation statistics file, and the
temporary statistics file is deleted.

write/1=%1%.stat %1% ?

runtime/1=%1%.stat) R

ada/main remakes:%l-% :f&

adalink %1% Eo

runtime/l1=%1%.stat

pause 15

fi/length/nheader/1=%1%.stat %1%.pr

x :udd:benchmarks:hformat %1%.stat %1%.stats

copy/a harness.out %1%.stats R

delete %1%.stats

X %1% 3

copy/a/l=warning/2=warning instr.dat instr . ﬁ

delete instr -ZW
4

T

Here is a sample input file to the test harmess for the
AOS/VS system. The test harness would be executed with the
command "harness_many input.file" where the file “input.file" is
shown below. The parentheses and ampersands are part of the
AOS/VS command line syntax, which allow the processing of each
listed test in turn.

Eali
-
E.

(ADDSAl ¥
ADDSA2 & ;
ADDSA3) ‘
1
Below is the generated file "harness.out”, which is the fff
compilation statistics file for the input listed above. L
b
;Eﬁ
‘..:‘::’

-
-«
e
i
L
.-
o ™
.

.

Y} ’
e

r *
PR

® a8

it

...

. S

. . -.,'-"’.-.

o

U M Mo o on 3 a B - a e et B oca MRy s My oo

&

..'._ <

ATV

A
2

T T
]
ata

- v
"’ .. o ¢ 3 v
Ty e et e e
L r.T. Ly

oL

ADDSA1 254.000 5.069 319488
ADDSA2 375.000 5.071 319488
ADDSA3 650.000 5.023 319488 &ﬁﬂ
b
-------------------------------- hate
ok
Below is the generated file “instr.dat", which is the file Y |
containing the instrumentation statistics collected during the E.
Trun for the input above. Note that the lines have been broken to ;;j
o]

fit in this manual; the "®" is used as a continuation character.

ol
ADDSAl START_REC 0.000 0.000 & o
ADD PROGRAM, CONTROL VERSION - 10_000 ADDS et
ADDSAl STOP_REC 0.301 0.301 oy
ADDSA2 START_REC 0.000 0.000 &]
ADD PROGRAM, W/0 PRAGMAS - 10_000 ADDS £
ADDSA2 STOP_REC 0.400 0.400 £
ADDSA3 START_REC 0.000 0.000 & -
ADD PROGRAM, WITH PRAGMAS - 10_000 ADDS ol
ADDSA3 STOP_REC 0.201 0.201]
R
b
o
L.
1)
r'
o
o=
D.3 _:.:{.]
h~-‘\.
N
o
2

"‘u

s
§ L
- VAX/VMS:
. The following is ‘'USW: [BENCHMARK.WORK]HARNESS_MANY.COM', the
I main command file:
$! This VAX/VMS command file loops through a file
$! containing ADA source benchmark test file names and
. $! submits them to the test harness for the collection of
o $! the various statistics. For this implementation, this
$! COM file must be submitted as a batch job.
$!
$! The name of the file containing the test names is given as
$! the first parameter to this command procedure.
$!
$! The second parameter is the directory in which these tests
$! must reside.
$!
$!
é, $! Set the default ADA library
$!
$ acs set 1lib usw:[benchmark.mike.adalib]
$!
$! Set the default directory to usw:[benchmark.work]
$!
B $ set def usw:[benchmark.work]
$!
$! Create the three statistic files
$.!
$ create comp.dat
$ create instr.dat
$ create run.dat
| $!
$! Open the file with the test names
$!
$ open/read in_file ’'pl’
$!
$! Loop through the file of tests, submitting each test to
. $! the harness for the collection of the various data.
$!
$ loop:
$ read/end_of_file=-done in_file test
S @harness ‘test’ 'p2’
o $ goto loop
$!
$! At the end of the input file, close the file and
' $! terminate this command procedure.
- $!
T $ done:
NS $ close in_file
{ $ write sys$output "All tests have been submitted for testing"
D.4
!
e A e T T T Syt T e e T S N T L e

~~~~~



Below is the command file that is executed by
I ‘ "HARNESS_MANY.COM’'. This file’'s name is
e ‘USW: [ BENCHMARK . WORK ] HARNESS . COM ' .

SO $! This VAX/VMS command file performs functions necessary to

$! collect various data about ADA source test files.
E $! These data are put into the files ‘comp.dat’
5 $! (compilation statistics), ’‘instr.dat’
$! (instrumentation statistics) and ‘run.dat’ (run-time
$! statistics).
$!
$! Record the current elapsed and cpu times (before
$! compilation)
$!

$ beg_cpu_time = f$getjpi("", "cputim")
$ beg_time = f$time()

- $!

oL $' Compile and link the test

X $! .

oo $ ada/nocopy_source ‘p2‘'‘pl’

T $ acs link 'pl’

$!
. $! Record the current elapsed and cpu times (after
) $! compilation)
- $!

$ end_cpu_time - f$getjpi("", "cputim")
$ end_time = f$time()

$!
$! ‘file’ => file_spec of the object file created by the
o $! compilation
n $! _
$ file = "usw:[benchmark.mike.adalibl" + pl + ".obj" N
S $! ]
- $! Calculate the number of bytes in the object file S
R $! AR
. $ blocks_used = f$file_attributes(file, "eof") .
o $ block_size = f$file_attributes(file, "bls") 53
g $ file_size = blocks_used * block_size <]
$!
. $! Calculate elapsed cpu time ( in hundredths of seconds ) D
:..f $) ;,;_:,:
- $ cpu_time = (end_cpu_time - beg_cpu_time) b
$! EACN
$! Divide the elapsed cpu time into seconds and jgﬁ
$! hundredths-seconds LN
s ] :'._:'.
= $ cpu_time_secs = cpu_time / 100 R0
. $ cpu_time_hundsecs = cpu_time - 100 * cpu_time_secs F
= '.‘-‘71
:;; D.5 o
B o
g o




o dEBRi T

‘ $! and ‘end_time’ and returns the elapsed time in its
- $! seconds and hundredths seconds parts. These values are
$! placed in the global symbol table and have symbol names
-2 $! ‘elapsed_time_secs’' and 'elapsed_time_hundsecs’.
- $!
$ @calc_elapsed_time "'’'beg time'" "'‘end_time'’"
$!
L $! Put the compilation statistics in one output line
$!
$ out_line ="''pl’ '‘elapsed_time_secs’'."” + -
"’’'elapsed_time_hundsecs’ " + -
"'‘cpu_time_secs’'.’‘cpu_time_hundsecs’ ‘'’‘file_size'"
$!

N A AT AR MCME R AE D s SO s s i g

RPN LU S e SRR S A USSR A A A Al ek A A e A Al b S et o> e gin i e
-

$! Calculate elapsed time
$! The COM file ‘calc_elapsed_time’' takes the 'beg _time’

$! Append the output line onto the file
$!

$ open/append comp comp.dat
$ write comp out_line
$ close comp

e $!
$! Record the current elapsed and cpu times (before
$! execution)
$!

$ beg_cpu_time = f$getjpi("", "cputim")
. $ beg_time = f$time()
h $!

$! Run the executable file

$!

$ run ‘pl’'.exe

$!

$! Record the current elapsed and cpu times (after execution)
C $!

$ end_cpu_time = f$getjpi("", "cputim”)

$ end_time = f$time()

$!

$! Append the instrumentation statistics to instr.dat
$!

S'append instr.; instr.dat

B $!
$! Calculate elapsed cpu time ( in hundredths of seconds )
$!
: $ cpu_time = (end_cpu_time - beg_cpu_time)
: $! o
) $! Divide the elapsed cpu time into seconds and b
$! hundredths-seconds AN
$! A
$ cpu_time_secs = cpu_time / 100 e
$ cpu_time_hundsecs = cpu_time - 100 * cpu_time_secs ]
r. "f'. '.-4
NSRS
e
_ )
! O
Do

.......................................




b M e

S $!
B $! Calculate elapsed time
g $!
i l $ @calc_elapsed_time "' ‘beg time’'" "'’‘end_time’'"
[ s !
$! Put the available execution statistics in one output line
e $!
u $ out_line ="'‘pl’ '‘elapsed_time_secs’'." + -
S "'’'elapsed_time_hundsecs’ " + -
i . "'‘cpu_time_secs’.’ ‘cpu_time_hundsecs’ 512 612"
w $!

$! Append the output line onto the file
$!

$ open/append run run.dat
$ write run out_line

l $ close run
. $!
$! Delete unnecessary files
$!

$ del instr.;*
- $ delete ’'pl’'.exe.*
t $ acs delete unit ‘pl’

R AT T

Calculate the elapsed time between the beginning time and

'; $!
- st the ending time (the first and second parameters).
: $! The times are given in the VAX/VMS format. The two
$! times are assumed to be less than 24 hours apart!
] & &
) $!
- $! Disect the beginning time (first parameter) into time
- $! units
$!
" $ beg_hs = fSextract(21,2,pl) ! hundredths of seconds
K $ beg_sec = fSextract(18,2,pl) ! seconds oy
AN $ beg_min = f$extract(15,2,pl) ! minutes g
$ beg_hr = fS$extract(12,2,pl) ! hours N
- $! ]
g - $! Disect the ending time (second parameter) into time units R,
o $! Ti:
B $ end_bhs = fSextract(21,2,p2) ! hundredths of seconds oo
$ end_sec = f$extract(18,2,p2) ! seconds ]
$ end_min - fS$extract(15,2,p2) ! minutes e
$ end_hr = f$extract(12,2,p2) ! hours =
$! S
R $! Convert each of the times to hundredths of seconds A
R T s F
- N
b .- D.7 :‘:‘:'
N RN
SO N
o I o
l i r 5: L
SRR RN




R R N Nt Sl ek S . e Sh L DAL Sal St e M i o Sl Satl o it e At e Db Ak Sc i S Aadi s S Sk DN And Il Jail et Ae gt el et e Bactic se it Al A Tadl i

N

il

Dol $ beg_time = -

L (((beg_hr * 60) + beg min) * 60 + beg_sec ) * 100 + beg_hs
e $ end_time = -

ﬂ I (((end_hr * 60) + end_min) * 60 + end_sec ) * 100 + end_hs
- $!

o $! Get the total elapsed time ( in hundredths of seconds )
R $!

o $ total_time = end_time - beg_time

N $!

i L $! If the total time is negative then the beginning and end
b $! times were on different days.

- $!

= $ if total_time .1t. O then -
G total_time = (((24 * 60) * 60) * 100) + end_time - beg_time

R $!
F $! Seperate the elapsed time into seconds and hundredths of
: $! seconds
$!

$ total_time_secs = total_time / 100
$ total_time_hundsecs = total_time - total_time_secs * 100

S $!
o LK $! Put the elapsed time in the global symbol table, so that
; $! it can be accessed.

$!

$ elapsed_time_secs == total_time_secs
$ elapsed_time_hundsecs == total_time_hundsecs

' h :!exit

e Here is an example of an input file to the 'HARNESS_MANY'
- COM file:
s

[

CAPAAL
CAPAA2
NRPCA1
NRPCA2

The format of this file must be as given above in order to
use these COM files. No file type is given on the file names;
however, they must be of type '.ADA’ in their resident directory.

Vo TR

b oo
: . The main COM file would be executed with the command ROAS
S R
Lo “$ submit HARNESS_MANY/parameters=(file_spec, dir_spec) - Q}J
R} _ /queue=big" T
E! [ where ‘file_spec’ is the VAX/VMS file specification of the file t;i
b v': '::‘.'
':‘:' na D.8 - R

i
. .
-
D




CAPAAL
: CAPAA2
O NRPCA1
- NRPCA2

Below is the generated file ‘run.dat’ with the run-time
statistics for the input file given above.

/queue=big

22.76 3.64 3584
19.6 3.85 3584
20.26 3.73 4096
19.28 3.79 4096

numbers do not mean anything;

containing the names of the tests and ‘dir_spec’ is the directory
specification of the directory containing the tests.

Here is an example of executing the main COM file, and the
system messages received:

$ submit harness_many/parameters=(new.lst,usw:[benchmark.new]) -

Job HARNESS_MANY (queue BIG entry 355) started on BIG

E‘ . Job HARNESS_MANY (queue BIG entry 355) completed

Below is the file ’'comp.dat’, which is the compilation
statistics file generated for the input file above.

Report Writer.
CAPAAl 11.95 0.21 512 512
CAPAA2 12.23 0.24 512 6512
- NRPCA1 11.15 0.24 512 6512
NRPCA2 10.93 0.20 512 512
-

‘ Below is the file ’‘instr.dat’, containing instrumentation
statistics generated for the input file above.
fit in the manual are denoted by the
next line.

The last two
they are there simply to make the
C format of the execution statistics file what is expected by the

Lines too long to
and continued on the

e

B

N
o R

[




T I T T e T T e T T T T T T T T T

~r

CAPAAl START_REC 0.0000 0.0000 &
! Constrained Array Param. Assoc. w/3 elements (Control)
~ CAPAA1 STOP_REC 0.0300 0.0300
CAPAAZ2 START_REC 0.0000 0.0000 &
Lo Constrained Array Param. Assoc. w/3 elements (test)
iy CAPAA2 STOP_REC 0.0300 0.0300
NRPCAl1 START_REC 0.0000 0.0000 @&
L Nested Recursive Procedure Call (Control)
NRPCA1 STOP_REC 0.0500 0.0500 R
NRPCA2 START_REC 0.0000 0.0000 & S
Nested Recursive Procedure Call (Test)

B o R 1 s e v - DT . 2 A s
. I S ! o . Ve ]
| e At . Lt
e B et Lt et
PR e s
a
o

e

P
AL A N
et .

. .
2T I A
- PP IO ST T o

© e

TR . SR
Lt l‘l'll

P
H
4

-
[ A .
B Ry U S S S "

bt o o A 4 A

-~

D.10




o Distribution List for IDA Paper P-1879
‘W Sponsers L
Lo Ms. Virginia Castor o
Director
Ada Joint Program Office R
1211 Fern St., C-107 S
Arlington, VA 22202 e
[ k-
i LCDR Phil Meyers
Navy Deputy Director
Ada Joint Program Office
1211 Fern St., C-107 T
Arlington, VA 22202
Ray Szymanoski S
- AFWAL/AAAF-2 o
~ Wright-Patterson AFB, OH 45433-6503 T
i Others L
: Mr. Michael Vilot R
General Systems Group o
51 Main St. S
Salem, NH 03079 o
. Dr. Gregory Riccardi { .
Room 206, Lone Building o
Department of Computer Science
" FLorida State University
. Tallahassee, FL 32306 e
& Defense Technical Information Center (2 copies) [ _
Cameron Station N
Alexandria, VA 22314 g
. Dr. Dan Alpert, Director i
Center for Advanced Study L
University of Illinois .
912 W. Illinois Street .
Urbana, [llinois 61801
Dr. Barry W. Boehm L_'
TRW Defense Systems Group ey
MS 2-2304 s
One Space Park e
Redondo Beach, CA 90278 o
' P

pe
.

............................




Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Rational Machines

1501 Salado Drive
Mountain View, CA 94043

Mr. Neil S. Eastman, Manager
Software Engineering & Technology
IBM Federal Systems Division

6600 Rockledge Drive

Bethesda, MA 20817

Admiral Noel Gayler, USN, Retired
1250 S. Washington St.
Alexandria, VA 22314

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

Dr. Harrison Shull, Chancellor
University of Colorado

Campus Box B-17

301 Regent Administration Center
Boulder, CO 80309

Dr. Robert L. Sproull
President Emeritus
University of Rochester
Rochester, NY 14627

IRA

Mr. Seymour Deitchman, HQ

Mr. Robin Pirie, HQ

Dr. Thomas H. Probert, CSED

Dr. Jack Kramer, CSED

Dr. John Salasin, CSED

Ms. Audrey A. Hook, CSED (2 copies)
Mr. Stephen Welke, CSED

Ms. Katydean Price (2 copies)

IDA Control & Distribution Vault (25 copies)

D T RO e ‘o
LIS ST AR W WA AL W A R ST, T,

............

----------




.
¥
ﬁ~..¢\b.

S- B¢

U EP L

er

WP iy )

e,
il

"
oL

.
)

Colik 25
W

P
S
L Y

>

*
-



